"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"gmod = smf.ols(formula='np.sqrt(Species) ~ Area + Elevation + Nearest + Scruz + Adjacent', data=gala).fit()\n",
"plt.scatter(gmod.fittedvalues, gmod.resid)\n",
"plt.ylabel(\"Residuals\")\n",
"plt.xlabel(\"Fitted values\")\n",
"plt.axhline(0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check the QQ plot of the residuals. Plot is assigned to foo so it doesn't print twice."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/anaconda/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEKCAYAAAAFJbKyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XeYlOXVx/HvAbFgF7BEYRELlkTRrNiisWBDRX3FkpCIldhFYlRAkSKIXcCKJZasxBYjGlRssSWoi1JFFJAFxEhTQFZpe94/7mdgGGZ2Z3anbPl9rmuuedrMc3iAPXt3c3dERETS1ajQAYiISN2ixCEiIhlR4hARkYwocYiISEaUOEREJCNKHCIikhElDhERyYgSh4iIZESJQ0REMrJBoQPIhebNm3vr1q0LHYaISJ0xduzYBe7eIp1r62XiaN26NaWlpYUOQ0SkzjCzsnSvVVWViIhkRIlDREQykpfEYWaPmdk8M5sUd2wbM3vDzL6K3rdO8dmu0TVfmVnXfMQrIiKp5avE8ThwfMKx64G33H034K1ofx1mtg1wE3Ag0B64KVWCERGR/MhL4nD394BFCYdPAZ6Itp8ATk3y0eOAN9x9kbt/D7zB+glIRETyqJBtHNu5+7cA0fu2Sa7ZEZgdtz8nOiYiIhkoKYHWraFRo/BeUlL976rt3XEtybGkSxaaWTegG0CrVq1yGZOISJ1SUgLdukF5edgvKwv7AF26ZP59hSxxfGdmOwBE7/OSXDMHaBm3vxMwN9mXuftwdy929+IWLdIawyIi0iD07r02acSUl4fj1VHIxDESiPWS6gq8lOSa14FjzWzrqFH82OiYiIikadaszI5XJV/dcUcA/wXamtkcM7sAGAwcY2ZfAcdE+5hZsZk9AuDui4ABwCfRq390TERE0pSq9r66tfrmnrTJoE4rLi52TTkiIhIktnEANG0Kw4evbeMws7HuXpzO92nkuIhIPdelS0gSRUVgFt7jk0amanuvKhERyYIuXaqfKBKpxCEiIhlR4hARkYwocYiISEaUOEREJCNKHCIikhElDhERyYgSh4iIZESJQ0REMqLEISIiGVHiEBGRjChxiIhIRpQ4REQkI0ocIiKSESUOERHJiBKHiIhkRIlDREQyUrDEYWZtzWxc3GuJmXVPuOYIM1scd02fQsUrIlIvrFpV468o2AqA7j4VaAdgZo2Bb4AXk1z6vruflM/YRETqnQkToGdP2HVXGDKkRl9VW6qqjgamu3tZoQMREalXZsyAP/wB2rWD//wHWreu8VfWlsRxNjAixbmDzWy8mb1qZnvnMygRkTrru+/giitgjz3gH/+A664LSeTqq2v81QWrqooxsw2BTkDPJKc/BYrc/Ucz6wj8E9gtxfd0A7oBtGrVKkfRiojUckuWwB13wF13wc8/w4UXQp8+8ItfZO0WtaHEcQLwqbt/l3jC3Ze4+4/R9iigiZk1T/Yl7j7c3YvdvbhFixa5jVhEpLZZvhzuvhvatIEBA+DEE+Hzz+HBB7OaNKB2JI7fkaKaysy2NzOLttsT4l2Yx9hERGq31avhiSdg992hRw/Yf3/45BN45plwLAcKWlVlZk2BY4A/xR27GMDdHwQ6A5eY2SrgJ+Bsd/dCxCoiUqu4w8svQ69eMHkyFBfDY4/B0Ufn/NYFTRzuXg40Szj2YNz2vcC9+Y5LRKRWe/99uP760Etq993huefg9NMhVNDkXG2oqhIRkXRMmAAnnQSHHw4zZ8JDD8GkSdC5c96SBihxiIjUCiUlYYhFo0bhvaQk7uTXX8Mf/xjGYnz4IQweDF99Bd26QZMmeY+14N1xRUQaupKSkAPKy8N+WVnY32jxPDp/cXPoGdW4MVx7bRiPsfXWBY1XJQ4RkSyptNRQid691yYNgM1ZwrXlN3HC5W3g/vvhvPNg2rRQ0ihw0gCVOEREsiJVqQGgS5fKPztrVnjfkOVcwgP0ZiAtWMCzfgZnfn5zzrrVVpdKHCIiWZBYaoCw37t31Z9t3XI15/AEX7I793A142hHMZ9wbdGztS5pgEocIiJZESs1pHscWDMW49OKXmzFZEr5NRfwKG/RgaZNYfjAnIRaYypxiIhkQaop8lJOnffBB3DYYXDKKWy1yQrev+JZOrf6hLetA0VFMHx41VVchaLEISKSBQMHQtOm6x5r2jQcX0dsLMZhh4Vutg89BJMnc9jQM5hZZlRUhCEatTVpgBKHiEhWdOkSSglFRWEs3nqlhlo2FqMm1MYhIpIlXbokKSnMmwc3176xGDWhxCEikgtLlsCdd4bXzz/DBReEdTF23LHQkdWYEoeISDYtXw4PPBAaNxYsgDPOCOtjtG1b6MiyRm0cIiLZEL8uxtVXw777wscfw7PP1qukAUocIiI1E1sXo107OPdcaN4cRo+GN9+EAw4odHQ5ocQhIpJClXNPxcZidOoUqqieeSasvnfMMQWINn+UOESkQaoqKcTmniorC4WK2NxTJSXAxIlw8skhacyYEXpMTZ4MZ54ZvrCeU+O4iDQ46UxImGzuqW3Lv2bjP90E5X+DLbaAW26BK69cf+RfPVf/U6OINEiVlSjSmZAwfo6pFszjHq5iKm3puOw5+MtfQknj+usbXNKAWlDiMLOZwFJgNbDK3YsTzhswBOgIlAPnuvun+Y5TROqOqkoU6UxI2KoVLCpbQg/u4s/cySb8xGOcz2M79mHMrTvl9g9Qy9WWEseR7t4uMWlETgB2i17dgAfyGpmI1DlVlSiqnJBw+XKeP2wI09mFvvTjdY7jl0zi6qbDuaKBJw2oPYmjMqcAT3owBtjKzHYodFAiUntVVaJINSHhoAGr4cknoW1biv/WndV77UOn7T/mTHuen4v2qNUz1uZTwauqAAdGm5kDD7n78ITzOwKz4/bnRMe+jb/IzLoRSiS0SjmPsYg0BK1aheqpZMdh3QbwWbOgVUvn8c6vcMRtvWDSJNh/f3j4Ybbv0IGRZvkLvI6oDSWOQ919f0KV1GVmdnjC+WR/a77eAffh7l7s7sUtWrTIRZwiUkekM8V5ly5h+vKK9z5gZsvDOOKuTmFOqb//fe1YDCWNpAqeONx9bvQ+D3gRaJ9wyRygZdz+TsDc/EQnInVRlVOcQ/KxGJ9/Dmed1SDGYtREQZ+OmW1qZpvHtoFjgUkJl40EzrHgIGCxu3+LiEgl1pQoEhdGmjkTzjknzCX1/vswaBBMmwZ/+lOdWxejUKps4zCzXYA57r7czI4A9iE0Vv+QhftvB7wYetyyAfC0u79mZhcDuPuDwChCV9xphO6452XhviLS0MybF+qqHnggrIvxl7+EdTG22abQkdU56TSOvwAUm9muwKOEEsDThB/mNeLuM4B9kxx/MG7bgctqei8RaaCWLl27LkZ5OZx/Ptx0E+ykbrXVlU7iqHD3VWZ2GnCPuw8zs89yHZiISI0sXx7aLW6+OayLcfrpYXuPPQodWZ2XThvHSjP7HdAVeCU6popAEamdVq8di0H37vCrX8FHH8HzzytpZEk6ieM84GBgoLt/bWY7A3/LbVgiIhlyh1deCetidO0a2i5efx3eegvaJ3bWlJqoMnG4++fAdcCn0f7X7j4414GJiKQtti7GySevHYtRWgrHHquxGDlQZeIws5OBccBr0X47MxuZ68BERKoUPxZj+vTQY0pjMXIunSfblzAo7wcAdx8H7JzDmEREKpdqLMbFF2ssRh6kkzhWufvihGPrTfkhIpJz8+eHBu+2bVn19+d4cPNraLZ4Bq0f6knJPzctdHQNRjqJY5KZ/R5obGa7mdkw4D85jktEBAhra+zdail9rR8/bteGiqHDmHbIOezZ+CsuWXIbi9hm3WVdJefSSRxXAHsDy4ERwBKgey6DEhEBGPH4cj47byjvzN6FvvTlNT+OX280mYMmPsy0n9cdwJe4gp/kTjq9qsrdvbe7HxDNPtvb3X/OR3Ai0jAkLvP69FOr4W9/4zcX7sEdK69iEr+kPR9xBs8z7uc9WLgw+fekWodDsivlyHEze5lK2jLcvVNOIhKRBmXdZV6dvctGsU/XnuATmc9+XMBDvMExJF9hYV1aiic/Kpty5I68RSEiDVZsmddD+JDBXM9hfMBXvitXNB/BK03PZOas9StGmjWDn35ad3nYxPU2JHdSJg53fzefgYhIw7R52SReohedeJlv2Z6LeYBHuYDVC5vw1D3xpZGgaVMYMiRsr1nBr1VIGlrWNT8qq6p61t3PNLOJJF9xb5+cRiYi9VtZGfTpw3ieYglb0JNBDOVKygndaotaJVniNSFBKFEURmVVVVdF7yflIxARaRief2A+S64bSJelDwDGe+2u4fyp1zHnp2ZrromvdurSRQmitknZqypulb1L3b0s/gVcmp/wRKTeWLqUCaf347hL29B16TCe4o/swjRO/fI2Tj63WeXLvEqtks56HMcQJjmMd0KSYyIi61u+PGSCAQPYZ/58XuD/6M1AphJNcV4Oo0aFWUSkbqisjeMSQsmijZlNiDu1OfBhrgMTkTpu9WoYMQJuvDFkhSOP5MB3BvMx609xrvEXdUtlAwCfBk4mLBV7ctzr1+7+h5re2Mxamtk7ZjbFzCab2VVJrjnCzBab2bjo1aem9xWRHHOHf/0L9tsP/vhH2HrrNetifFeUfF0Mjb+oWypr41js7jPd/XfAHGAloXfVZmaWjb/mVcCf3X1P4CDgMjPbK8l177t7u+jVPwv3FZEaSBzlXVKy9tih9h8+3uRwOOkklsz7iSuaj6DxZ6W07nYsJU8bAweGhu94Gn9R96SzHsflwHfAG8C/otcrlX4oDe7+rbvHFodaCkwBdqzp94pI7sRGeZeVhYJFWRmcdx7cce4khpSdwoccSsvl07is0QPssOhz7l1wNhU0WjMJIYTmDjWE123pNI53B9q6e4rZYWrOzFoD+wEfJTl9sJmNB+YC17j75FzFISLrKylZO46iUaPQdBHTijL6rbyJc3hy3bEYFZtCxbrfE5uEcOZMJYq6Lp3ZcWcDietxZI2ZbQa8AHR39yUJpz8Fitx9X2AY8M9KvqebmZWaWen8+fNzFa5IvZZYDXXppeuWMGJJoxkLuIur+ZLdOZu/cyd/ZhemM5ieawbwJaNG8PrB3Ctfk8nMHgXaEqqolseOu/tdNb65WRNCtdfr6Xyfmc0Eit19QWXXFRcXe2lpaU3DE2lQ1p1sMDALCSNmU36kB3dxDXewKcv4K+fRl758w07rf2ESRUXqdltbmdlYdy9O59p0qqpmRa8No1dWmJkBjwJTUiUNM9se+M7d3czaE0pIOasyE2nIYpMNxosljQ1ZTjeGcyMD2JYwFuMGbuYL9qRJE9jQYMWKtZ9r0iQknfhjagSvP6pMHO7eL0f3PhT4IzDRzMZFx3oBraL7Pgh0Bi4xs1XAT8DZXlURSUTSFt9+kex/llHB73maAdzIzszkHY7gZAYztvGBVFSE+aRiySBxPqlkx9S2UT+kU1XVAriWsArgxrHj7n5UbkOrPlVViVQtWdXUWk5HRjGIXuzLBD5lP3pyC6M5lqZNTT2h6qFMqqrSaRwvAb4Adgb6ATOBT6odnYjUCsmqpgAO4r+8y2/5FyexmS3j0Q4jOL1VKW/YcRQVKWlIem0czdz9UTO7Klqj410z01odInVcYg+nvZjMIHpxCiP5H9txwzb3s9ddF3JB1yZcUJgQpZZKJ3GsjN6/NbMTCeMp0utCISK1VqtWoZttK8roRxiLsZTNuW2rgVw75ypu3jR1t1pp2NKpqrrZzLYE/gxcAzwCXJ3TqEQk5+64fgHDNlg7FuMuevDLTWaw4729QElDKpFOr6rY9CKLgSNzG46I5NyPP8Ldd9P59tupWL2M5zY9l78s60ujopYMVs8nSUOVicPM/krypWPPz0lEIpIbK1bwyUXDaf23AbSomMdrm5zGysEDOevaPTmr0LFJnZJOG0f8hIYbA6cR2jlEpC6oqIARI1h69Y0cMP9r/s1vuZ6X+Oing2jaD4bvqFKGZCadqqoX4vfNbATwZs4iEpHscIdXX4WePWHCBGY1acefeZXXOQ4wYO3Eg0ockol0GscT7UY0ultEaqn//heOOAJOPDG0aTz9NPusHMvrHE8sacRo4kHJVDrrcSw1syWxd+BltN64SO00eTKceioccghMnQr33QdTpsDvfkfLouT/3bX6nmSqysTh7pu7+xZx77snVl+JSIHFVlTaZx945x24+WaeGTiN1rddSqONN6R1a+jYUavvSXZUmjjMbBMzu9DM7opevzezrM2QKyI1tGAB9OgBu+8OI0ZA9+4wfTolrXtz/pWbrbNS3xNPQNeuWn1Pai5l47iZ/YpQLfUuMJZQMXoccLWZHUNYje+GvEQpIuv68UfGn3s3bf5xO019GS9s2pXxp/Wl5IVWzLp7/ZX6IDSEjxql9TCk5irrVTUUuMjd34g/aGYdgEmAlnAVyaOSEujbawXHzxrOjTaAfX0eL3IqvRnIlGV7wd/WXpuYNGLUEC7ZUFlV1Q6JSQPA3d8kzF91Ws6iEmmg4pdubd48vBo1ghbNKhjdtYTXZ+3BMK7gc9+Tg/gv/8eLTGGvtL9fDeGSDZWVOBqZ2Ubuvjz+oJltDKx096Sz+ItI+uIXUtpmG1i6dO2qeQsXAjjH8xq3LOpJO8Yzjn05gVG8lqRbbVXUEC7ZUlmJ40ngBTNrHTsQbT8LPJXLoEQagthCSrEG7IUL111q9SD+y785glfpyOYs5Xc8zf58ymucQLpJo3FjNYRL9qUscbj7zWZ2OfCemcU68S0D7nD3YXmJTqQeS7WQ0p58ziB6cSov8R3bchn38jAXsZLMOjQ2bapkIblRaXdcd7/X3VsRVv/b2d2LlDREsiOxobols3iU85nIrziKt7mBAezCdO7nsqRJo0kTaNZsbYnikkvU1VbyI51JDnH3pbm4uZkdDwwBGgOPuPvghPMbEarMfg0sBM5y95m5iEUk32ILKTVjAb0YxGXcB8AQrmIQvVhI83Wub9IEttgCFi0Knx2oKdClQNJKHLlgZo2B+4BjgDnAJ2Y20t0/j7vsAuB7d9/VzM4GbgXNAC31w603/sgXl9xD95W3sxk/8gRdGbhBXxZv2YpFi6DZNuE6JQqpbaozyWG2tAemufsMd18B/B04JeGaU4Anou3ngaPNLLOuJCK1SEkJ7Fa0gsvtPo7qtis3rbyRMZscxb5MoH/RY/R/vBULFoSZ0BcsYM32zJlKGlJ7pDPJYVMzu9HMHo72dzOzk7Jw7x2B2XH7c6JjSa9x91WEVQibpYizm5mVmlnp/PnzsxCeSHaVPFXBm+c/zWuz9uReLufzirYcudF/WPDwi0zyvZUcpM5Ip8TxV2A5cHC0Pwe4OQv3TlZySFxpMJ1rwkH34e5e7O7FLVq0qHFwItlQUgKti5yO9ip7n7M/f13RhaVszgmM4gj+zb+XH0zv3oWOUiQz6SSOXdz9NsJocdz9JzIdeZTcHKBl3P5OrL+y4JprzGwDYEtgURbuLZJzJSXw8AVjeHzWkYyKxmL8npL1xmJoGhCpa9JJHCvMbBOi3/TNbBdCCaSmPgF2M7Odoxl3zwZGJlwzEugabXcG3nb3pCUOkVplyhSaX3Qa/15+MHsyhcsZxp5MYQS/xxP+22kaEKlr0ulVdRPwGtDSzEqAQ4Fza3pjd18VDTB8ndAd9zF3n2xm/YFSdx8JPAo8ZWbTCCWNs2t6X5Gcmj0b+vaFxx/n4IpNuZH+3M3VLGOzpJdrGhCpiyydX+DNrBlwEKFsPcbdF+Q6sJooLi720tLSQochDUBsrqkfyxZyy+aDOLf8PipWO/dzGYMb9WJeRfP1PtO4cegppS62UpuY2Vh3L07n2srW49g/4dC30XsrM2vl7p9WN0CRuipxUsKKJT9y6cp7+Au3s9nSMBajL32ZTSuoWP/zmgZE6oPKqqrurOScA0dlORaRWimWLMrKwnQe7tCEFZy18GFuZADb8x3/5BR6M5DP2Xu9z6uEIfVNZZMcHpnPQERqo9gMtmsmI/QKzuYZbuYGdmEG73I4p/EiY9b0Vl9fRUV4idQXVTaOR+tvXAr8hlDSeB940N1/znFsIgW3dgZb5zhe5xZ6sh/jGM8+dORfvJrGFOfqNSX1TTrdcZ8E9gaGAfcCe6H1OKQei1+Fr6wM2vMRb3MUr3ECW7CE31PCfnzGq3SkqqShXlNSH6XTHbetu+8bt/+OmY3PVUAihRRfNbUHUxhIb/6PF1Oui5E4Y23HjjBqVGg8V5uG1FfpJI7PzOwgdx8DYGYHAh/mNiyRwujdG7Ypn80wbqIrT7CMTbmBAdxD9zVjMWIN5EVFSgzSMKVTVXUg8B8zm2lmM4H/Ar81s4lmNiGn0YnkQaxqqrkt5PKya/iK3ehCCUO4ijbMYCA3sIzN1iyQ9NRTIXFoUkJpqNIpcRyf8yhECqSkBLpftIxuP93DtdzGZvzIk5xDX/oyi6I11xUVhUQhImkkDncvM7OtCZMNbhB3XAMApW5buZIpVz7MxJ/6sz3f8RKd6MWg9cZiqIFbZF3pdMcdQJibajprpzTXAECpE+JHescaq6moYEyPZ7lqwQ3czHTe4zD+j3/wXw5Z57NmauAWSSadqqozCVOrr8h1MCLZlDh4r6zMebrraG6u6EkX/6zSsRiqmhJJLZ3G8UnAVrkORCTb1g7egwMZw9scxb9WH8+W/gNd+FvKsRiqmhKpXDoljlsIXXInEbcOh7t3yllUIlkwa9b6YzEuZxjD6bbOWIwYVU2JpCedxPEEcCswkaTzfYrUQrNnM6JpXzove5xlbEof+nEXPVKui6GqKZH0pZM4Frj70JxHIpINCxfCLbfAvffSebVz/wZX0X9VTxYQ1qFv0iSULFbEtdipakokM+m0cYw1s1vM7GAz2z/2ynlkIplYtgwGDmRFyzZU3HkXjy8/m8O3+5IpF93FpkUt1gze++tf4bHHwnbsmNbHEMlMOiWO/aL3g+KOqTuu1A4rV8Ijj0D//vC//zG6cSeuZyCT+SV8A+OeSJ4YlChEqi+dAYBZX5fDzG4HTgZWEMaHnOfuPyS5biawFFgNrEp3WUNpACoq4NlnWXrVDWw+bzrv8xt6N3qe91cfus5l5eWhd5UShUj2pFPiwMxOJEytvnHsmLv3r8F93wB6uvsqM7sV6Alcl+LaI2v7GueSR+4wejT07AmffUaZ/YrreIVRdISK5FOcz5qV5xhF6rkq2zjM7EHgLOAKQof3MyBuEp9qcPfR7r4q2h0D7FST75MG4uOP4eij4fjj4fvv6d7sKfbxcYziRCpbF0MLKYlkVzqN44e4+znA9+7eDziYMG9VtpwPvJrinAOjzWysmXXL4j2lDojNWruXTeHVTU+HAw9kwbuTuJKh7FYxlSEL/4BX8U9YPaZEsi+dxPFT9F5uZr8AVgI7V/UhM3vTzCYleZ0Sd01vYBVQkuJrDnX3/YETgMvM7PBK7tfNzErNrHT+/Plp/LGkUOJX2GvdOuwnHrv0Uuh34WxuKLuQifySQ8vfoA/92LliOsO4gmmzNsRSFDIaN1aPKZFcSqeN4xUz2wq4HfiUUAp4uKoPuXuHys6bWVfgJOBod/dk17j73Oh9npm9CLQH3ktx7XBgOEBxcXHS75PCW3/+KDjvvHXHViwtW0ibBwYzgWEYzlCuZBC91ozFiHFfu6hSTNOmShYiuVZlicPdB7j7D+7+AqFtYw9371OTm5rZ8YTG8E7uXp7imk3NbPPYNnAsYd4sqSOSlSzi54+KWbkyJI2mLKMng5hBG3pwJ3/nbHbnS3pw93pJIya2Ep9KGCL5k7LEYWYHALPd/X/R/jnA6UCZmfV190U1uO+9wEbAGxbqG8a4+8VRVdgj7t4R2A54MTq/AfC0u79Wg3tKjiSdupz1Sxbx+/E2YCUX8gh96M8O/I+X6ETv2FiMKmiqEJH8q6yq6iGgA0DUtjCY0LOqHaFKqHN1b+ruu6Y4PhfoGG3PAPat7j0k+zJJEJtssn6SKC8P7Q+rV4d9o4IzeZabuYFdCWMxOvM8/yGMxUishkqkhm+RwqgscTSOK1WcBQyPqqteMLNxuQ9NapNkbROVJYhkJQsISaPpJs6hP73BYK5nfz5jIr/i1A1e4aVVa6c4b9oUunaFUaPWJqqOHdfd1yy2IoVRWRtHYzOLJZajgbfjzqU1cFBqp2RtD1WdT9Y2UV4e5hTMRKftP2b6zkczmuPYmjAWY+KTn3HG4ydSVGTrtFXcf3+ohqqoCO+J+0oaIoVRWQIYAbxrZgsIXXLfBzCzXYHFeYhNciBVyQHCD+JU51OVIFJp1gx++mnt59ryBYMb9+bU//0DVreAIUPY+U9/4p6NNlrzGSUCkbrBUvSEDSfNDgJ2AEa7+7Lo2O7AZu7+aX5CzFxxcbGXlpYWOoxaqXXrkAwSxRqZU52Pb5uIl5ggYG2XWIBh183hom/6ci5/pWLjpjS5/hro0QM23zwLfxoRyRYzG5vufICVVjm5+5gkx76sbmBSeKnmbYodT3V+9eqQEBITxJAhYTux0bzLCYvgllvosmAYbOhwyRU07t0bWiTvVisidUc6I8elHkk1b1PseKrzsXaHZGMmunSJa3uYvIwuZYOgTRu480446yyYOhXuuUdJQ6SeUOJoYAYODCWFePHdWis7v06CmJnQJrFyJTz4IOy6ayh+HH44TJgATzwR6r9EpN5Q4mhgunRJXXJI5/x6KirgmWdgr73gkktC4vjgAxg5En5Z9QA+Eal7Km0cr6vUOJ4H7vDGG2FdjE8/hV/9CgYNghNPJOXsgyJSa2XSOK4Sh2Tuk0+gQwc47jhYtAieego++wxOOklJQ6QBUOKQ9E2dCp07Q/v2MHFi6FL1xRfwhz+E/roi0iAocdRDVY0Mz9icOXDRRbD33vD669C3L0yfDldeCXED+ESkYdDUIfVMVSPDM7JoEQweDMOGhUbwyy8PPabUrVakQVOJo55JNadU794ZfEl5OdxySxiLcccdcOaZGoshImuoxFHPVDUyvFIrV8Kjj0L//vDtt6Gxe9Cg0GNKRCSiEkc9U9XI8KQSx2K0aQPvvw8vv6ykISLrUeLfRCLkAAAPpElEQVSoZ6oaGb4Odxg9Gg44AM4+GzbeOCSL99+H3/wmL/GKSN2jxFHPpD3yO34sxsKF8OSTMG6cxmKISJXUxlEPxSYeTGrq1NBS/sIL0Lx5aPC++GJ1qxWRtBWkxGFmfc3sGzMbF706prjueDObambTzOz6fMdZrySOxbjpJpgxA666SklDRDJSyBLH3e5+R6qTZtYYuA84BpgDfGJmI93983wFWC/Ej8VYvRouuyyUOLbdttCRiUgdVZurqtoD09x9BoCZ/R04BVDiSEd5OQwdCrfeCosXh2lB+vfXFOciUmOFbBy/3MwmmNljZrZ1kvM7ArPj9udEx5Iys25mVmpmpfPnz892rHXHypXw0ENhevOePUPvqPHjQ+O3koaIZEHOEoeZvWlmk5K8TgEeAHYB2gHfAncm+4okx1LOAe/uw9292N2LWzTE0c0VFfDss6EN4+KLw1iM997TWAwRybqcVVW5e4d0rjOzh4FXkpyaA7SM298JmJuF0Oqf2LoYY8eGxZNGjlS3WhHJmUL1qtohbvc0YFKSyz4BdjOznc1sQ+BsYGQ+4qszYmMxjj0WFiwIy7SOGwcnn6ykISI5U6g2jtvMbKKZTQCOBK4GMLNfmNkoAHdfBVwOvA5MAZ5198kFird2mToVzjgjrIsxfnwYizF1KpxzjtbFEJGcK0ivKnf/Y4rjc4GOcfujgFH5iqvW++Yb6NcPHnsMNtkkjMXo0QO22KLQkYlIA1Kbu+NKzKJFoVvt0KFhLMall8INN2gshogUhBJHbZZsLEa/frDzzoWOTEQaMCWO2mjlylAd1a9fWBfjxBPDuhj77FPoyERENDturZI4FmPnncNYjFdegX32yf5a4iIi1aDEUWCxZHCMvcmETdrDWWfBhhuGsRgffACHHbbmum7dwhri7mvXElfyEJF8U+LIguqWBEpK4IELSnmkrANvcAxbrphPtw0f5+nrxq83FiMra4mLiGSBEkcNVbskMHUqW3U7gw+WH8C+jKc7d7M7X/Lwiq70unH9sRg1WktcRCSLlDhqKOOSwDffhMyy9978tvxV+tGHXZjOELqzgrAuRrJkUK21xEVEckCJo4bSLgl8/z1cd12Ytfbxx+HSS/ntTjPoSz+Wsu4AvmTJIKO1xEVEckiJo4aqLAmUl4eFlNq0gdtvh86dw/QgQ4fSY/C2aSeDtNcSFxHJMSWOGkpVEhjUL2FdjEMPDRMQPvXUmgF8mSaDLl1g5szQa3fmTCUNESkMDQCsodgP7969Q/VUUcsKnuz0PIcNvAG++goOOQSeeWZNt9pkn1cCEJG6RCWOLFhTEhj9Jl+3aM9h90ZjMV56aZ2xGCIi9YESRzaUloZ1MY45BubPD43f48dDp05aF0NE6h0ljpr48ks480w44IDQfnH33eFY165aF0NE6i21cVTHN99A//7w6KOw8cbQpw/8+c9aF0NEGgQljkx8/32Y4nzIEK2LISINlhJHOsrLYdiwMB5j8eLQGt6vXxibISLSwBQkcZjZM0DbaHcr4Ad3b5fkupnAUmA1sMrdi/MWJMCqVWvXxZg7Fzp2DOti7LtvXsMQEalNCrXm+FmxbTO7E1hcyeVHuvuC3EcVxx1eeCEMzvjySzj4YBgxAg4/PK9hiIjURgXtVWVmBpwJjChkHOt46y1o3x7OOAOaNAljMT78UElDRCRS6O64hwHfuftXKc47MNrMxppZt5xGMnZsGIfRoQPMm6exGCIiKeSsqsrM3gS2T3Kqt7u/FG3/jspLG4e6+1wz2xZ4w8y+cPf3UtyvG9ANoFUmc41/+WXoGfXcc9CsWRiLcfHFoZutiIisx9y9MDc22wD4Bvi1u89J4/q+wI/ufkdV1xYXF3tpaWnlF82dG8ZiPPJISBI9esA112gshog0SGY2Nt0OSIXsjtsB+CJV0jCzTYFG7r402j4W6F/ju37/Pdx2WxiLsWoVXHJJKHFst12Nv1pEpCEoZOI4m4RqKjP7BfCIu3cEtgNeDO3nbAA87e6vVftuP/20dizGDz/A738fShwaiyEikpGCJQ53PzfJsblAx2h7BpC9ARNHHQVjxmgshohIDRW6V1VelJTA+dN781vepfXkf1EySUlDRKS66v2UIyUl0K0blJefFA6UhX3QAkoiItVR70scvXuHqabilZeH4yIikrl6nzhmzcrsuIiIVK7eJ45UYwEzGSMoIiJr1fvEMXAgNG267rGmTcNxERHJXL1PHF26wPDhUFQUppwqKgr7ahgXEameet+rCkKSUKIQEcmOel/iEBGR7FLiEBGRjChxiIhIRpQ4REQkI0ocIiKSkYIt5JRLZjYfKEvz8ubAghyGUxOKrXoUW/UotuqpL7EVuXuLdC6sl4kjE2ZWmu6qV/mm2KpHsVWPYquehhibqqpERCQjShwiIpIRJQ4YXugAKqHYqkexVY9iq54GF1uDb+MQEZHMqMQhIiIZaXCJw8xuN7MvzGyCmb1oZluluO54M5tqZtPM7Po8xXaGmU02swozS9kTwsxmmtlEMxtnZqW1LLZCPLdtzOwNM/sqet86xXWro2c2zsxG5jimSp+DmW1kZs9E5z8ys9a5jCfD2M41s/lxz+rCPMX1mJnNM7NJKc6bmQ2N4p5gZvvnI640YzvCzBbHPbM+eYytpZm9Y2ZTov+jVyW5JrvPzt0b1As4Ftgg2r4VuDXJNY2B6UAbYENgPLBXHmLbE2gL/BsoruS6mUDzPD+3KmMr4HO7Dbg+2r4+2d9pdO7HPD2rKp8DcCnwYLR9NvBMLYrtXODefP77iu57OLA/MCnF+Y7Aq4ABBwEf1aLYjgBeyfczi+69A7B/tL058GWSv9OsPrsGV+Jw99HuviraHQPslOSy9sA0d5/h7iuAvwOn5CG2Ke4+Ndf3qY40YyvIc4vu8US0/QRwah7uWZl0nkN8zM8DR5uZ1ZLYCsLd3wMWVXLJKcCTHowBtjKzHWpJbAXj7t+6+6fR9lJgCrBjwmVZfXYNLnEkOJ+QhRPtCMyO25/D+n8RheTAaDMba2bdCh1MnEI9t+3c/VsI/4mAbVNct7GZlZrZGDPLZXJJ5zmsuSb6RWYx0CyHMWUSG8DpUZXG82bWMg9xpaO2/7882MzGm9mrZrZ3IQKIqjz3Az5KOJXVZ1cvF3IyszeB7ZOc6u3uL0XX9AZWASXJviLJsax0P0sntjQc6u5zzWxb4A0z+yL6jajQsRXkuWXwNa2i59YGeNvMJrr79GzElyCd55CzZ1WFdO77MjDC3Zeb2cWEktFROY+saoV6Zun4lDBlx49m1hH4J7BbPgMws82AF4Du7r4k8XSSj1T72dXLxOHuHSo7b2ZdgZOAoz2qAEwwB4j/LWsnYG4+YkvzO+ZG7/PM7EVC9UONE0cWYivIczOz78xsB3f/Nip+z0vxHbHnNsPM/k34zSwXiSOd5xC7Zo6ZbQBsSX6qQqqMzd0Xxu0+TGgLrA1y9u+rpuJ/ULv7KDO738yau3te5rAysyaEpFHi7v9IcklWn12Dq6oys+OB64BO7l6e4rJPgN3MbGcz25DQeJnTXjjpMrNNzWzz2DahsT9pT48CKNRzGwl0jba7AuuVjsxsazPbKNpuDhwKfJ6jeNJ5DvExdwbeTvFLTN5jS6j77kSoM68NRgLnRD2EDgIWx6ooC83Mto+1UZlZe8LP1oWVfypr9zbgUWCKu9+V4rLsPrtC9AIo5AuYRqjrGxe9Yj1bfgGMiruuI6F3wnRCVU0+YjuN8JvBcuA74PXE2Ai9YcZHr8m1KbYCPrdmwFvAV9H7NtHxYuCRaPsQYGL03CYCF+Q4pvWeA9Cf8AsLwMbAc9G/x4+BNvl4VmnGdkv0b2s88A6wR57iGgF8C6yM/q1dAFwMXBydN+C+KO6JVNLzsACxXR73zMYAh+Qxtt8Qqp0mxP1c65jLZ6eR4yIikpEGV1UlIiI1o8QhIiIZUeIQEZGMKHGIiEhGlDhERCQjShxSa5lZs7jZRv9nZt9E2z+YWa7GYKSKpV00Iji23ynZzLJpftfMaCxJ4vEtzexJM5sevUosxUy/NVHZn8XM+prZNdm+p9QvShxSa7n7Qndv5+7tgAeBu6PtdkBFtu8XjeBOpR2hb3wstpHuPjjLITwKzHD3Xdx9F8IYj8ezfA/Iz59F6jElDqmrGpvZw9H6A6PNbBMAM9vFzF6LJoB838z2iI4Xmdlb0cR9b5lZq+j442Z2l5m9A9wajcx/zMw+MbPPzOyUaIR1f+CsqMRzloU1K+6NvmM7C2u7jI9eh0TH/xnFMdmqmIzSzHYFfg0MiDvcH9jXzNpaWO/hlbjr7zWzc6PtPlG8k8xseNwI5n+b2a1m9rGZfWlmh1X1Z0mIKdWzPCO613gzq/FUN1L3KHFIXbUbcJ+77w38AJweHR8OXOHuvwauAe6Pjt9LmFZ6H8LElkPjvmt3oIO7/5kwaeLb7n4AcCRwO9AE6ENYM6Oduz+TEMtQ4F1335ewZsPk6Pj5URzFwJVmVtnst3sB49x9dexAtP0ZYS2Uytzr7ge4+y+BTQjzsMVs4O7tge7ATR6mUq/szxIv1bPsAxwX/Xk7VRGb1EP1cpJDaRC+dvdx0fZYoLWF2UEPAZ6ztUtbbBS9Hwz8X7T9FGHxp5jn4n5gHwt0iqvn3xhoVUUsRwHnwJof9ouj41ea2WnRdktCsks1f5GRfLbSdNboONLMrgWaAtsQEtfL0bnYhHdjgdZpfFe4aeXP8kPgcTN7Nu77pQFR4pC6annc9mrCb9qNgB+idpCqxP+QXha3bcDpnrBolZkdmElwZnYE0AE42N3LLczGu3ElH5kM7Gdmjdy9IvqORsA+hCm7W7FuDcHG0TUbE0oCxe4+28z6Jtwn9pxWk9n/95TP0t0vjp7HicA4M2vn686oK/Wcqqqk3vAwtfXXZnYGrFlned/o9H8IM8ECdAE+SPE1rwNXxLUT7BcdX0pYljOZt4BLousbm9kWhGnSv4+Sxh6E5Tori30aoVrqhrjDNwBvufssoAzYy8Ja5VsCR0fXxJLEgqiU0Lmy+6TxZ4nFk/JZmtku7v6Ru/cBFrDudN3SAChxSH3TBbjAzGKzB8eWRb0SOM/MJgB/BK5K8fkBhDaNCWY2ibWN1e8QfnCPM7OzEj5zFaG6aCKhSmhv4DVgg+h+AwgzplblfMKU59PMbD4h2VwM4O6zgWcJM6CWEJIM7v4DYc2MiYTFgz5J4z6V/VnipXqWt5vZxOj5vEeYEVYaEM2OK1ILmVlbYBShcXpUoeMRiafEISIiGVFVlYiIZESJQ0REMqLEISIiGVHiEBGRjChxiIhIRpQ4REQkI0ocIiKSkf8H7s3seSwMgToAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.hist(lmod.resid)\n",
"plt.xlabel(\"Residuals\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Generate some random QQ plots from known distributions:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/anaconda/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcFPW19/HPGVBhXFFxd2bcYuKKioqaq4gLrkCP2ZRrUPNcrhq3JF5Ngo8ajUmMMYlbHi+JMRonJhqnARFQUHGJcQEDgsEYUUAiKqggBgWGOc8fv2qmp+nuqVl6m/m+X69+dXd1TdWZEvtM/X6nTpm7IyIiUlXqAEREpDwoIYiICKCEICIiESUEEREBlBBERCSihCAiIoASgoiIRJQQREQEUEIQEZFI71IH0B7bbrut19XVlToMEZGKMnPmzGXu3r+t9UqaEMxsAbASWAc0ufvAfOvX1dUxY8aMYoQmItJtmNnCOOuVwxnCse6+rNRBiIj0dJpDEBERoPQJwYHHzGymmY3OtoKZjTazGWY2Y+nSpUUOT0Sk5yh1QjjK3Q8GTga+aWZHZ67g7mPdfaC7D+zfv805ERER6aCSJgR3fyd6fh9IAoeVMh4RkZ6sZAnBzDY1s81Tr4ETgbmlikdEpBI1NEBdHVRVheeGho5vq5RVRtsDSTNLxfEHd59SwnhERCpKQwOMHg2rVoX3CxeG9wAjR7Z/e1ZJt9AcOHCg6zoEEZGgri4kgUy1tbBgQct7M5vZ1nVeUPpJZRER6aBFi9q3vC1KCCIiFaqmpn3L26KEICJSoW64AaqrWy+rrg7LO0IJQUSkQo0cCWPHhjkDs/A8dmzHJpShPHoZiYhIB40c2fEEkElnCCIiAighiIhIRAlBREQAJQQREYkoIYiICKCEICIiESUEEREBlBBERCSihCAiIoASgoiIRJQQREQEUEIQEZGIEoKIiABlkBDMrJeZ/c3MJpY6FhGRnqzkCQG4FJhX6iBERHq6kiYEM9sFOBX4TSnjEBGR0p8h/BK4AmjOtYKZjTazGWY2Y+nSpcWLTESkhylZQjCz04D33X1mvvXcfay7D3T3gf379y9SdCIiPU8pzxCOAoaZ2QLgj8AQM7uvhPGIiPRoJUsI7v49d9/F3euArwFPuPt/lioeEZGertRzCCIiUiZ6lzoAAHefDkwvcRgiIj2azhBERARQQhARkYgSgoiIAEoIIiISUUIQERFACUFERCJKCCIiAighiIhIRAlBREQAJQQREYkoIYiICKCEICIiESUEEREBlBBERCSihCAiIoASgoiIRJQQREQEUEIQEZFIyRKCmfUxsxfNbLaZvWpmPyhVLCIiUtp7Kq8Ghrj7J2a2EfCsmU129+dLGJOISI9VsoTg7g58Er3dKHp4qeIREenpSjqHYGa9zGwW8D4w1d1fyLLOaDObYWYzli5dWvwgRUR6iJImBHdf5+4DgF2Aw8xsvyzrjHX3ge4+sH///sUPUkSkhyiLKiN3Xw5MB04qcSgiIj1WKauM+pvZVtHrvsDxwGulikdEpKcrZZXRjsA9ZtaLkJgecPeJJYxHRKRHK2WV0SvAQaXav4iItFYWcwgiIlJ6SggiIgLESAhmtoeZbRK9Hmxml6Qmg0VEpPuIc4bwELDOzPYE7gJ2A/5Q0KhERKTo4iSEZndvAhLAL939W4QKIRER6UbiJIS1ZnYmMApIlYVuVLiQRESkFOIkhHOBI4Ab3P0tM9sNuK+wYYmISLG1eR2Cu//dzK4EaqL3bwE/KXRgIiJSXHGqjE4HZgFTovcDzGxCoQMTEZHiijNkdC1wGLAcwN1nESqNRESkG4mTEJrcfUXGMt3IRkSkm4nTy2iumZ0F9DKzvYBLgOcKG5aIiBRbnDOEi4F9CfdAvh/4GLiskEGJiEjxxakyWgWMiR4iItJN5UwIZvYweeYK3H1YQSISEZGSyHeG8LOiRSEiIiWXMyG4+1PFDEREREor35DRA+7+FTObQ5ahI3c/oKCRiYhIUeUbMro0ej6tEDs2s12Be4EdgGZgrLvfUoh9iYhI23KWnbr7kujlhe6+MP0BXNgF+24CvuPuXwAGAd80s326YLsiItIBca5DOCHLspM7u2N3X+LuL0evVwLzgJ07u10RkXLT0AB1dVBVFZ4bGkodUXY5E4KZXRDNH+xtZq+kPd4CXunKIMysDjgIeCHLZ6PNbIaZzVi6dGlX7lZEpOAaGmD0aFi4ENzD8+jRXZgU3GHOHLjttk5vytyzX2pgZlsC/YAfA99N+2ilu3/Y6T237Gcz4CnC/RYa8607cOBAnzFjRlftWkSk4OrqQhLIVFsLCxZ0cKPNzfDCC5BMQmMjzJ8PZmFHu+66wepmNtPdB7a12XxlpyuAFcCZZtYL2D5afzMz28zdF3XwV0kPciPCPZsb2koGIiKVaFGOb8pcy3NauxamTw9JYNw4WLIENtoIjjsOrrgChg+H7bfvVKxttq4ws4sILbDfI1QDQShD7VTZqZkZcBcwz91/3pltiYiUq5qa7GcINTUxfnjVKnjssXAWMHEifPQRVFfDySdDfT2ceipsuWWXxRqn2+llwN7u/kGX7TU4CjgbmGNms6Jl33f3SV28HxGRkrnhhjBnsGpVy7Lq6rA8q+XLw5d/MglTpoQf7NcPhg2DRAJOPBH69i1IrHESwtuEoaMu5e7PAtbV2xURKScjR4bnMWPCMFFNTUgGqeUAvPsujB8fzgSeeAKammCnneCcc8KZwNFHh+GhAouTEN4EppvZI4QW2ABomEdEJJ6RIzMSAMCbb4azgGQSnnsuVAvtuSd8+9shCRx6aKhTLaI4CWFR9Ng4eoiISHu5w9y54SwgmYTZs8PyAQPg2mtDEth331AtVCJx7ofwg2IEIiLS7aSXhyaT8MYb4Qv/yCPh5pvDnMBu5XOL+jhVRv2BKwh3TeuTWu7uQwoYl4hIZVq7Fp56KpwJpMpDe/eGIUPg8stDeegOO5Q6yqziDBk1AH8iNLk7HxgF6JJhEZGUVHloMgkPP9y6PDSRCOWhW21V6ijbFCchbOPud5nZpdE9Ep4yM90rQUR6tuXL4ZFHwplAenno6aeH+YATTghJoYLESQhro+clZnYq8A6wS+FCEhEpLw0NoWx09cJ3OXfr8Vy0cyM7zYvKQ3fcMZSHJhJwzDFFKQ8tlDg1TT+M+hp9B7gc+A3wrYJGJSJSYHE7kI7/xZvMPfdm7lv4Rf7FTvzow/NZNfdN/j70W/DXv8LixXDHHXD88RWdDCBPc7typOZ2ItKW1F/zOS8Co6UDaebVw2PHwsizovLQVOO4qDx0FgeSJEEj9cxlP2prrePN6Yqs083t0jZ0N9lvoXleB2MTESmIzC/6VKtpaJ0UxoxpnQyMZvZf9SIrL2yEa1uXh17Oz2gkwVvs3mpf7W5OVwHaPEMwszPS3vYBEsA77n5JIQPLRmcIIpJP3FbTVVXQy9dyDE+RIMkIxrEz77CW3mw09LgwHxCVhxakfXWRddkZgrs/lLHh+4FpnYhNRKQg2mw1HZWHPlid5Nh/P8zWfMS/qWYKJ9FIPXN2PZVXprQuD213c7oK1pFGGXsBcRq3ioh0uXyTwdlaSm/Jci7eugHOOAP694dEgtN8ApN7nc4IkvRnKV/iIcZVj+TKH294rcDIkWFuobY2jCLV1kZzDZm9iboDd8/7AFYCH6c9vw6c0dbPFeJxyCGHuIh0f/fd515b624Wnu+7r2V5dbV7aAwUHtXVG36+PUt8NHf6ZIb6GnqHFXfc0f2CC9ynTnVfsybnProjYIbH+I5VlZGIlJV8FUBjxuQZz3/yLUgmef9/G9n29eeownmr9558OjTBPlfVw2GHFb17aLmIO4eQNyGYWV9gJLBPtGgG8Gd3X9MlUbaTEoJI95GrPDTfJO6iReG8IHD25VXqaSRBkoOI7rN14IHhSuFEAvbbr6TdQ8tFpyeVzWx/4GHgKWAm4WY2Q4FvmdkJwOXuflUXxSsiPUi+8tB8E8O1uzaz3aKX1ieBz/FPmjFmbnIk/OhmGDECdt89+wakTfnOn24F/svdR7n7re5+i7uPAr4HzAUOLUqEIlIRck32ZlueeR0AhPdjxmw4MdybtQzhcX636Td5deWuvMAgvs3PeYvd+G/uZM++7/D6Xc+GG8soGXROrskF4LU8n70FVMeZpMj3AH4LvA/MjbO+JpVFykPmhOwFF2Sf7M21PP19+sMsbHvrvqt8GOP8bkb5B/RzB1+7SbV7fb0/e8F9vv+uH/WIyeCuQmcnlc3sdWB/d1+dsbwP8Iq7f66zycjMjgY+Ae519/3aWl9zCCKll23S1yx9bL9Fr16wbl285VuynFHbPMItg5M0TZxM79Wr+IiteGLTYWz7XwmOueHEiuseWi664sK0e4GHzOwid18QbbSOMJT0+y6IEXd/OtqmiFSIbMM9uWpTsiWD1PLqath81bsMZzwJkgzhCTb+YC08tyO9zxsFiQT9Bg/mjApvGFdJciYEd/+hmV0EPG1mqbT8b+Bn7n5bUaIDzGw0MBqgJttVJyJSVO3p4ZPtTKCOtzivX5L/7t9SHrqg9x68MfQy9hmTgMMP77HloaUW6zoEM9scwN1XdnkA4QxhooaMRCpDrrLQzGGj6moYNQru+Z2z26evkiBJPY2ty0MTifDYf3+VhxZQ3CGjWGnY3VcWIhmISPnLrBI65ZQNh/Krq+H881vaO9TVNPPQFc/zq82vZMmWezOX/fkB17Buk2pmnvUzmD8fZs2Ca66BAw5QMigTce6YJiI9VLbrBe65J/zlP2lSxkVlX1kL9U+F+wiMGwfXvgO9e7PFkCFwzbepGj6cgTvuWNpfSPIqaUKIOqcOBrY1s8XANe5+VyljEpEWua4XmDQpav386afh5vKNjXBxdHP5vn1b31y+X79ShC4dEOcGOdWE22fWuPt/mdlewN7uPrGzO3f3Mzu7DRHpOpntJLLNFWzBCo5a+Ah8qREmTw4ZYqutWm4uf6LKQytVnDOEuwmtK46I3i8GHgQ6nRBEpHxkGx5KTRRvx3sMYwL1NHIcj7Mxa+EvO4Sxo0QCBg+u+PsJS7yEsIe7f9XMzgRw90/NNAMkUukyzwY++aT18FAtC0h4qAw6ir9QhTOf3flV70v5wph6hl6t8tDuJk5CWBN1PXUAM9sDWJ3/R0SklLJ1EoWWZVtvDStXwpqob3EYGnL24e/ry0MP5m8AzOYAbt3yau5eUc+Kmv254UfG0O54cxiJlRCuAaYAu5pZA3AUcE4hgxKRjss29HPuuWH4J5UAPvggPBvNDGQG9TRSTyOf458APMcRXM5NJEmwrnYPFiyAy4r/q0iRxbmn8lQzexkYRGiBfam7Lyt4ZCLSIdkqg9aubXndiyaO5mnqaWQE49iFf7GW3jzJsfycbzOe4bxLKA+troax3fDewZJdvvshHJyxaEn0XGNmNe7+cuHCEpH2SB8iytZ8oA+fcgJTSZBkGBPYhg9ZRV+mcBLfI8FETmM5/dhmG9hsM7CMm9ZIz5DvDOHmPJ85MKSLYxGRDsjWfRRCeeipPEKCJCczmc34N8vZkoc5nUbqeZShfEpLeWh1NdxyixJAT5avud2xxQxEROJLPyOoqmppILcd763vHpoqD13CDjRUnc2EqgRTmwazlo2BUCW6zRbw4Yc6G5AgzoVpfYALgS8SzgyeAe50988KHJtIj5FZFXTKKa1bQ6S/z6wQ2mXdgvWVQenlobdwKeNI8E7NIH74oyrOAl7Ncg9jkZQ2u52a2QPASuC+aNGZQD93/3KBY9uAup1Kd5GeADK/4NuWuzw0SYJG6pnD/tTWWmgvIT1eV9wgJ2Vvdz8w7f2TZja746GJ9GyZY/6pEtB8jGYO5aX1SSBVHvpXBq0vD32TPdavX13dcu2BSFxxEsLfzGyQuz8PYGaHA38pbFgi3Ve2stBs8pWH/oJvMZ7hLGGnlvV7QXOzhoOk4+IkhMOBr5tZ6j5JNcA8M5sDuLsfULDoRLqhfHcci1semqm6GsaOVRKQzomTEE4qeBQi3VyuqiAI5aGnMIkESU5h0vry0ImcxkOcsUF5KIQKoS1UISRdLM6VygvNrB+wa/r6ujBNJJ7MOYN166A/7zOc8a26h75n29Pg/8mz29Wz1YjBPPzoxjmrjpQApBDiVBldT+hdNJ+owR1hqKjoF6apykgqUeoexDUsXD8p/EWeXV8e+vgWCeouS3Di1YPCRIBIF+vKKqOvEFpgxy6KExFCD4l58zh7YSMjSHII4aR6NgdwHVczjgSzmg9gD3WTlzIRp5n5XGCrQgciUsnW34jenOE7vsijB3+P+Rt/Hvbdl+v5v6xmEy7nJvbknwxgNj/gWpbXHqiby0tZiXOG8GNC6elc0u6D4O7DOrtzMzsJuAXoBfzG3X/S2W2KFNsf7m2iYfTTfGd1khGMY9d3F9P0bi+e5Fhu5lLGMaJVeSjoOgEpT3ESwj3AjcAcoLmrdmxmvYA7gBMIt+V8ycwmuPvfu2ofIoVy/92fMe3KqXxxaSOn8zBn8QGf0odHGcoYbmAip/ERW7f6GV0nIOUuTkJY5u63FmDfhwFvuPubAGb2R2A4oIQgZemBX6/g2e9P4ovLkpzOJM5M6x6aJMGjDGUVm+b8+ebm8BApV3ESwkwz+zEwgdZDRp0tO90ZeDvt/WLCRXCtmNloYDRATU1NJ3cpklu2BnMvPPw+hywez5c3SjJi7TS+EnUP/T1nkyTBdFq6h7ZF/3yl3MVJCAdFz4PSlnXF/RCyzaZtUAPr7mOBsRDKTju5T5Gs0q8VqGEhIxYmqf9/jdzGX+hFM/PX7s6tXEKSBH/lCDxWPUYLzRlIJYhzYVqh7ouwmHCxW8ouwDsF2pdIbu7c/T/zuGxVuEYgVR76CvvzQ66ikXpe4QCy/w3TIn2OQBeSSSWKc4aAmZ0K7Av0SS1z9+s6ue+XgL3MbDfgX8DXgLM6uU2ReNyZcv1LvHlzkuM+bmQarwPh5vL/w09JkmA+e8benHoJSXcQ5wY5dwLVwLHAb4AvAS92dsfu3mRmFwGPEspOf+vur3Z2uyK5/OHeJh6+4hmOfC9JfVWSk5oXs5beTGcwv+SyDbqHtsUsXHtWW6szAOke4rSueMXdD0h73gxodPcTixNiC7WukHb77DOYOpX5P0uy5dMT2DYqD53CSSSj7qGZ5aG5qKGcVKqubF3xafS8ysx2Aj4AdutMcCIF9fHH8MgjLPxlkm1emsxm/gnbssX68tApnJS3PNRM8wDSM8VJCBPNbCvgJuBlQiXQrwsalUh7vf8+TJgAjY3w+OOwZg192J4GziJJgicYEqs8tLYW3XZSeqw4VUbXRy8fMrOJQB93X1HYsERiWLQIksnweOYZaG5mUe/d+HPTRYyrqucvzYNoJn73UJWGSk+XMyGY2aHA2+7+bvT+68AZwEIzu9bdPyxSjCLrLxqrXjiPc7dq5Lx+SbZ5ayYQykMf7XsVf1pbz8ymqDw0xhXBmhMQaS3fGcL/AscDmNnRwE+Ai4EBhAvFvlTw6ETcmXz9DJZc38iUpiSf5x+wHJ5fMYif9fopD66LykM/bXtToH5CIvnkSwi90s4CvgqMdfeHCENHswofmvRYTU1Mu+YZ3r4tyfErk5zMYk6gF9MZzG1czDhG8I7vDOva3lQ6XSsgkl/ehGBmvd29CTiOqJ9QjJ8TySuzZ9ANN0DVms+YeuU0/mNpI8NsAsd7291D49AZgUh8+b7Y7weeMrNlhBPyZwDMbE9Ak8rSIek9gzbnYwYtnMQmZzcy1CdzJp+Em8v7aTRS32b30LbojECkfXImBHe/wcweB3YEHvOWK9iqCHMJIu328+++z5mrJpAgyfFMYxPW8K5vzx/aWR660UbheoE1a1ov0ySxSMflHfpx9+ezLHu9cOFIt5QqD21s5MXFz9KLZt5kN27nIhqp53nilYdmDv/AhkNPSgAiHae5ACmMefPCRWLJJMwM5aHstx+3b3kVd69IMJsDaat7aLpcwz9KACJdRwlBuoY7zJjRkgT+8Y+wfNAguPFGSCRgr73YtgH+ORpY1fKjGv4RKQ9KCNJxTU3hCuHU1cKLF4dxncGD4ZJLYPhw2HnnVj+S+lLPHOrJtkwJQKS42ux2Wk7U7bQMfPYZTJsWzgQmTIAPPoA+fWDoUKivh9NOg61bykOzlZjqi16kuLqy26n0dCtXhrafjY3h+ZNPwnjOaaeFJHDSSbDppuHL/+DW9yS+555QYgqwcGEoOQUlBZFypDMEyW7p0pbuodOmhQH+7baDESOgvp773z2W712zcc4vf2i5gUwmdRQVKS6dIUj7pZWH8uyzocazrg6++c0wKXzkkdCrV7i47MLWf/nfeeeGX/65/tZYtKigv4WIdJASQk+XozyUMWPCcNCBB4Y/9dOMGdP6TAByf/lnU1PTyZhFpCBKkhDM7MvAtcAXgMPcXeNAxeIevvgbG8MjVR56+OHwk5+EJLDXXnk30Z6/8DOHjXTPAZHyVVWi/c4F6oGnS7T/nqWpCaZPh0svDQP4hx4KP/0p7LIL3HFHKBd9/nm48soNkkFDQxg1qqoKzw0Nuf/CzziRoLoazj8/7NIsPKu3kEj5KskZgrvPA7DMbxDpOqny0GQSxo9vKQ898US47jo4/XTYZpu8m0hvRActVUKjRm04gVxdHZbrHsQilavs5xDMbDRR6+0aDT7n9/HH4Rs5mcxeHjp0KGy2WezNZZsrWLUqbHrsWF1fINLdFKzs1MymATtk+WiMu4+P1pkOXB53DkFlp1nkKw9NJGDIENi47e6h2S4gO/vs7JPFZqEASUQqQ8nLTt39+EJtu8fLcnP59eWh9fVwxBGhhUSGXFcN5xoa2nrrMNKUSSdqIt1T2Q8ZSWTevJZrBGKWh6bL9aUPuYeG+vYNcwOZcwWqEhLpnkpypbKZJYDbgP7AcmCWuw9t6+d61JBRenloMgmvvRaWH354GAqKUR6arq4uJIFMtbXhjCHX0NDvf6+5ApFKF3fISK0ryklTU7hCODUc9PbbLd1DE4kwL5DRPTRTrmGhqqrcX/o1NbmThVpMiFS+ks8hSEyffQaPP97SPXTZspby0OuvDxVCbZSHpuQbFsr1pZ9KGuk/BxoaEumJlBBKIdU9NJmERx5pKQ899dRwJnDyye0qD03JNRcwZkz+L/1c9yjQ0JBIz6Iho2JZtqx1eejq1aE8dPjwMB9w7LGwySad2kW+YaHmZt2bQKSn0pBROXj77Zb5gKefDt/KtbVw4YWtuod2lXzDQhC+/JUARCQXJYSu9tprLeWhqbOZffeF738/nAkMGJC3PLQzNBcgIp2hhNBZ7vDyyy3lofPmheWHHRa6h44YAXvvXZRQNBcgIp2hhNAR69aF8tDGRhg3Lnz79uoFxxwThoNGjAidREtAw0Ii0lFKCHGtXt26e+iyZWES+MQT4Qc/iNU9VESknJXqfgiVYeVKeOAB+NrXoH//cE3Agw/CCSeE51Tl0DnnFCUZZLs3gYhIV9EZQqbUl3wyCVOnhjOD/v1DUkh1D+1keWhH5LvoTENEItIVdB0C5C4PTfUM6uLy0I7I14tI7SVEJB9dh9CWbOWh++wTykMTCTjooIKVh3ZErvsYt+f+xiIi+fSchNBWeWgiAZ/7XGljzKOti85ERDqreyeEMi4PbS9ddCYihdb9EkI3LQ/VRWciUmjdIyGsXAmTJ4czgUmTwvvNNw9lop3oHlpudNGZiBRS5SeEhgb4xjfKpjxURKRSVX5COOgguOCCkASOOqrk5aEiIpWqJAnBzG4CTgfWAPOBc919eYc2ts8+8ItfdGF0IiI9U6laV0wF9nP3A4DXge+VKA4REYmUJCG4+2Pu3hS9fR6ojNrPAlKfIhEptXKYQzgP+FOuD81sNDAaoKabXoWlPkUiUg4K1svIzKYBO2T5aIy7j4/WGQMMBOo9RiAVfU/lPNSnSEQKqeS9jNz9+Hyfm9ko4DTguDjJoDtTnyIRKQclmUMws5OAK4Fh7r6qrfUrUXvmBHKNhHXTETIRKVOlqjK6HdgcmGpms8zszhLFURCpOYGFC0NPvdScQK6kcMMNoS9ROvUpEpFi0/0QCqAjcwINDepTJCKFEXcOQQmhAKqqwplBJrNw7x0RkWKKmxB0T+UC0JyAiFQiJYQC0JyAiFQiJYQCGDkSxo4NcwZm4XnsWM0JiEh5K4crlbsl3btARCqNzhBERASo8IRQ6IZwajgnIj1JxQ4ZFbohnBrOiUhPU7HXIRS6IZwazolId9Htr0ModEM4NZwTkZ6mYhNCoS/+0sVlItLTVGxCKPTFX7q4TER6mopNCIW++EsXl4lIT1Oxk8oiIhJPt59UFhGRrqWEICIigBKCiIhElBBERARQQhARkUhFVRmZ2VIgS0OJrLYFlhUwnM5QbB2j2DpGsXVMd4qt1t37t7VSRSWE9jCzGXHKrEpBsXWMYusYxdYxPTE2DRmJiAighCAiIpHunBDGljqAPBRbxyi2jlFsHdPjYuu2cwgiItI+3fkMQURE2qHbJAQzu8nMXjOzV8wsaWZb5VjvJDP7h5m9YWbfLVJsXzazV82s2cxyVgaY2QIzm2Nms8ysKF382hFbKY7b1mY21cz+GT33y7HeuuiYzTKzCQWOKe9xMLNNzOxP0ecvmFldIeNpZ2znmNnStGP1f4oY22/N7H0zm5vjczOzW6PYXzGzg8sotsFmtiLtuF1dpLh2NbMnzWxe9P/opVnW6drj5u7d4gGcCPSOXt8I3JhlnV7AfGB3YGNgNrBPEWL7ArA3MB0YmGe9BcC2RT5ubcZWwuP2U+C70evvZvtvGn32SZGOVZvHAbgQuDN6/TXgT2UU2znA7cX895W276OBg4G5OT4/BZgMGDAIeKGMYhsMTCzBMdsRODh6vTnwepb/pl163LrNGYK7P+buTdHb54Fdsqx2GPCGu7/p7muAPwLDixDbPHf/R6H30xExYyvJcYv2cU/0+h5gRBH2mU+c45Ae85+B48zMyiS2knH3p4EP86wyHLjXg+eBrcxsxzKJrSTcfYm7vxy9XgnMA3bOWK1Lj1u3SQgZziNkzUw7A2/9l64BAAAGz0lEQVSnvV/Mhge4lBx4zMxmmtnoUgeTplTHbXt3XwLhfw5guxzr9TGzGWb2vJkVMmnEOQ7r14n+QFkBbFPAmNoTG8AZ0dDCn81s1yLEFVe5/795hJnNNrPJZrZvsXceDT0eBLyQ8VGXHrfeHf3BUjCzacAOWT4a4+7jo3XGAE1AQ7ZNZFnWJWVWcWKL4Sh3f8fMtgOmmtlr0V8vpY6tJMetHZupiY7b7sATZjbH3ed3RXwZ4hyHgh2rNsTZ78PA/e6+2szOJ5zJDCl4ZPGU6rjF8TKh9cMnZnYKMA7Yq1g7N7PNgIeAy9z948yPs/xIh49bRSUEdz8+3+dmNgo4DTjOowG2DIuB9L+KdgHeKUZsMbfxTvT8vpklCcMAnU4IXRBbSY6bmb1nZju6+5LoNPj9HNtIHbc3zWw64S+pQiSEOMchtc5iM+sNbElxhiPajM3dP0h7+2vCXFu5KNi/sc5K/xJ290lm9isz29bdC97nyMw2IiSDBndvzLJKlx63bjNkZGYnAVcCw9x9VY7VXgL2MrPdzGxjwqRfQatS4jKzTc1s89RrwiR51qqHEijVcZsAjIpejwI2OJsxs35mtkn0elvgKODvBYonznFIj/lLwBM5/jgpemwZY8vDCGPS5WIC8PWoamYQsCI1XFhqZrZDah7IzA4jfG9+kP+numS/BtwFzHP3n+dYrWuPW7Fnzgv1AN4gjKXNih6pSo+dgElp651CmK2fTxgyKUZsCUImXw28BzyaGRuhOmR29Hi1nGIr4XHbBngc+Gf0vHW0fCDwm+j1kcCc6LjNAb5R4Jg2OA7AdYQ/RAD6AA9G/x5fBHYvxrGKGduPo39bs4Engc8XMbb7gSXA2ujf2zeA84Hzo88NuCOKfQ55qvFKENtFacfteeDIIsX1RcLwzytp32unFPK46UplEREButGQkYiIdI4SgoiIAEoIIiISUUIQERFACUFERCJKCFJ0ZrZNWufId83sX9Hr5WZWqGsIcsUyILr6NPV+WLZOoTG3tSC6FiJz+ZZmdq+ZzY8eDZajc2tn5PtdzOxaM7u8q/cp3YsSghSdu3/g7gPcfQBwJ/CL6PUAoLmr9xddMZzLAEJtdyq2Ce7+ky4O4S7gTXffw933IFyj8Lsu3gcU53eRbkwJQcpNLzP7ddT//TEz6wtgZnuY2ZSo8d8zZvb5aHmtmT0eNWx73MxqouW/M7Ofm9mTwI3RleC/NbOXzOxvZjY8uqL3OuCr0RnKVy3cM+D2aBvbW7i3xuzocWS0fFwUx6vWRhNCM9sTOAS4Pm3xdcCBZra3hV77E9PWv93MzoleXx3FO9fMxqZdLTvdzG40sxfN7HUz+4+2fpeMmHIdyy9H+5ptZp1umSKVRwlBys1ewB3uvi+wHDgjWj4WuNjdDwEuB34VLb+d0P73AEJDw1vTtvU54Hh3/w6hWd4T7n4ocCxwE7ARcDXhngUD3P1PGbHcCjzl7gcS+uW/Gi0/L4pjIHCJmeXrZroPMMvd16UWRK//RrgXRT63u/uh7r4f0JfQpyult7sfBlwGXOOh5XW+3yVdrmN5NTA0+n2HtRGbdEMV1dxOeoS33H1W9HomUGeh2+ORwIPWcmuBTaLnI4D66PXvCTfVSXkw7Yv4RGBY2jh6H6CmjViGAF+H9V/iK6Lll5hZInq9KyGJ5eptY2TvPhnnHgnHmtkVQDWwNSEhPRx9lmp0NhOoi7GtsNP8x/IvwO/M7IG07UsPooQg5WZ12ut1hL+Mq4Dl0TxDW9K/fP+d9tqAMzzjZkBmdnh7gjOzwcDxwBHuvspCd9U+eX7kVeAgM6ty9+ZoG1XAAYS2yjW0PlPvE63Th/CX+0B3f9vMrs3YT+o4raN9/x/nPJbufn50PE4FZpnZAG/dIVW6OQ0ZSdnz0H74LTP7Mqy/j+yB0cfPETp7AowEns2xmUeBi9PG4Q+Klq8k3J4wm8eBC6L1e5nZFoR21h9FyeDzhNsW5ov9DcLw0FVpi68CHnf3RcBCYB8L92LeEjguWif15b8s+qv+S/n2E+N3ScWT81ia2R7u/oK7Xw0so3VbZekBlBCkUowEvmFmqW6wqdtDXgKca2avAGcDG9yIPHI9Yc7gFQs3U09N8j5J+EKeZWZfzfiZSwnDNnMIQzP7AlOA3tH+rid0v2zLeYTW1G+Y2VJCEjkfwN3fBh4gdLRsICQP3H054Z4Fcwg3ZHkpxn7y/S7pch3Lm8xsTnR8niZ095QeRN1ORYrIzPYGJhEmdSeVOh6RdEoIIiICaMhIREQiSggiIgIoIYiISEQJQUREACUEERGJKCGIiAighCAiIpH/D8DdXBizrv7jAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"foo = sm.qqplot(np.random.normal(size=50),line=\"q\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/anaconda/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcVOWV//HPYREkLiiiYqBpt2DEDW0VxBgFV1SgM0mMwcRMZgaXcUkmidHgS5OoMf6yTsZMkk5MNAkxmzYg4AoobqjgsCliBEERlMWAbLL1+f3x3KKLpqr6dndV3arq7/v1qldV3bp17+kr3lP3eZ57HnN3REREOiQdgIiIlAYlBBERAZQQREQkooQgIiKAEoKIiESUEEREBFBCEBGRiBKCiIgASggiIhLplNSOzawf8Je0RYcBt7j7T7N954ADDvDq6upChyYiUlFmzZq12t17NrdeYgnB3RcCJwCYWUfgHaA+13eqq6uZOXNmEaITEakcZrY0znql0mQ0FFjk7rGCFhGR/CuVhPA54P6kgxARac8STwhmtgcwHPhbls9Hm9lMM5u5atWq4gYnItKOJJ4QgAuAl939vUwfunudu9e4e03Pns32iYiISCuVQkK4FDUXiYgkLtGEYGbdgHOAB5OMQ0SkXI0dC9XV0KFDeB47tvXbSmzYKYC7bwJ6JBmDiEi5GjsWRo+GTZvC+6VLw3uAUaNavr1SaDISEZFWGDOmMRmkbNoUlreGEoKISJl6662WLW+OEoKISJmqqmrZ8uYoIYiIlKk77oBu3XZd1q1bWN4aSggiImVq1Cioq4O+fcEsPNfVta5DGRIeZSQiIm0zalTrE0BTukIQERFACUFERCJKCCIiAighiIhIRAlBREQAJQQREYkoIYiICKCEICJScPksUV1IujFNRKSA8l2iupB0hSAiUkD5LlFdSEoIIiIFlO8S1YWU9BSa3c3s72b2mpktMLNBScYjIpJv+S5RXUhJXyH8N/CIux8FHA8sSDgeEZG8yneJ6kJKLCGY2T7AGcA9AO6+1d3XJhWPiEgh5LtEdSElOcroMGAV8DszOx6YBVzv7hsTjElEJO/yWaK6kJJsMuoEnAj8wt0HABuBG5uuZGajzWymmc1ctWpVsWMUEWk3kkwIy4Bl7v5C9P7vhASxC3evc/cad6/p2bNnUQMUEWlPEksI7v4u8LaZ9YsWDQVeTSoeEZH2Luk7la8FxprZHsBi4F8TjkdEpN1KNCG4+2ygJskYREQkSPo+BBERKRFKCCIiAighiIhIRAlBREQAJQQREYkoIYiICKCEICIiESUEEREBlBBERCSihCAiIoASgoiIRJQQREQEUEIQEWnW2LFQXQ0dOoTnsWOTjqgwki5/LSJS0saOhdGjYdOm8H7p0vAeymNazJbQFYKISA5jxjQmg5RNm8LySqOEICKSw1tvtWx5OVNCEBHJoaqqZcvLWaIJwcyWmNk8M5ttZjOTjEVEJJM77oBu3XZd1q1bWF5pSqFT+Sx3X510ECIimaQ6jseMCc1EVVUhGVRahzKURkIQESlpo0ZVZgJoKuk+BAceM7NZZjY64VhERNq1pK8QBrv7cjM7EHjczF5z9+npK0SJYjRAVSX24oiIlIhErxDcfXn0vBKoB07JsE6du9e4e03Pnj2LHaKISLuRWEIws4+Y2d6p18C5wPyk4hGR9qW9lKNoiSSbjA4C6s0sFcef3P2RBOMRkXaiPZWjaAlz96RjiK2mpsZnztTtCiLSNtXVIQk01bcvLFlS7GgKz8xmuXtNc+slPcpIRKTo2lM5ipZQQhCRdqc9laNoCSUEEakocTqL21M5ipZQQhCRipHqLF66FNwbO4ubJoVRo6CuLvQZmIXnurr23aEM6lQWkQrS3jqL48pbp7KZHW5mXaLXZ5rZdWbWPR9BiojkkzqL2yZOk9EDwA4zOwK4BzgU+FNBoxIRaQV1FrdNnITQ4O7bgVrgp+7+VaBXYcMSEWk5dRa3TZyEsM3MLgUuByZGyzoXLiQRkdZRZ3HbxEkI/woMAu5w9zfN7FDgj4UNS0Qks+aGlY4aFTqQGxrCs5JBfM3WMnL3V83sm0BV9P5N4PuFDkxEpCnVICqsOKOMLgZmA49E708wswmFDkxEpKkxYxqTQcqmTWG5tF2cJqNvE+YpWAvg7rMJI41ERIpKw0oLK05C2O7u65osK5+72USkYmhYaWHFSQjzzezzQEczO9LM/gd4rsBxiYjsRsNKCytOQrgW6A9sAe4HPgC+UsigREQy0bDSwlItIxGRChe3llHWYadm9hA5+grcfXgrYxMRkRKU6z6EHxYjADPrCMwE3nH3i4qxTxER2V3WPgR3fyrXI48xXA8syOP2RKTMxZnkRvIvV5PRX939s2Y2jwxNR+5+XFt3bma9gQuBO4D/auv2RKT86W7k5GTtVDazXu6+wsz6Zvrc3TNMQ9HCnZv9HbgT2Bv4eqYmIzMbDYwGqKqqOmlpptkvRKRiaJKb/GvzBDnuviJ6ebW7L01/AFfnIcCLgJXuPivXeu5e5+417l7Ts2fPtu5WREqc7kZOTpz7EM7JsOyCPOx7MDDczJYAfwaGmJmqqIq0c7obOTlZE4KZXRX1H/Qzs7lpjzeBuW3dsbvf5O693b0a+Bww1d0va+t2RaS86W7k5OQadvon4GFCG/+NacvXu/v7BY1KRNqtVMfxmDGhmaiqKiQDdSgXXqw7laN7BQ4iLYG4e9Fb9HSnsohIy7X5TuW0DV1DKIH9HtAQLXagzcNORUSkdDSbEAiF7Pq5+5pCByMiIsmJM8robaDpfAgiIlJh4iSExcCTZnaTmf1X6lHowESksqk8RemJ02T0VvTYI3qIiLSJylOUJs2HICJFp/IUxZXPUUY9gRsIs6Z1TS139yFtilBE2i2VpyhNcfoQxgKvAYcC3wGWAC8VMCYRqXAqT1Ga4iSEHu5+D7Atmgvhy8DAAsclIhVM5SlKU5yEsC16XmFmF5rZAKB3AWMSkQo3ahTU1YU+A7PwXFenDuWkxRlldLuZ7Qt8DfgfYB/gqwWNSkQq3qhRSgClptkrBHef6O7r3H2+u5/l7ie5+4RiBCci5U/3G5SPOKOMfkfmKTS/XJCIRKRi6H6D8hKnD2EiMCl6TCE0GW0oZFAiUhnGjGlMBimbNoXlUnqavUJw9wfS35vZ/cATBYtIRCqG7jcoL3GuEJo6EtBoYRFplu43KC/NJgQzW29mH6SegYeAbxY+NBEpd7rfoLzEaTLauxA7NrOuwHSgSxTH39391kLsS0SSoekwi2D5chg3Dp56Cu6/PwznaqWcCcHM9gRGAUdHi2YSTtxbW73HRluAIe6+wcw6A8+Y2cPuPiMP2xaREqH7DQrg9dehvj48XnghLDvyyJAcerf+vuGsqcTMjgUWAJ8g1C9aCpwHPGtm3c3s9lbvFfAgNVqpc/Qon9KrIiLF4g6zZsHNN0P//tCvH9x4I2zfDrfdBvPnw8KFbUoGkPsK4WfAf7j74+kLzexsYD7wSpv2HLbVEZgFHAH83N1fyLDOaGA0QJV6okSkvdi+HZ55JlwFjBsX2tw6dIAzzoArroCRI/PeO591PgQze83dj8ry2ZtAf3fflOnzFgdh1h2oB6519/nZ1tN8CCJS0TZvhieeCElgwgRYswa6dIFzz4XaWrj4YjjggBZvNh/zIXQwsy7uvqXJhrsSKp/mJRkAuPtaM3sSOJ9w9SEi0j6sXQuTJoUk8MgjsHEj7LMPXHRRSALnnw977VWUUHIlhN8DD5jZNe6+BMDMqglNSX9o646jiXe2RclgT+Bs4K62bldEpOStWAHjx4ckMG0abNsGBx8Ml10WksBZZ8EexZ+xOGtCcPfbzewaYLqZpUYSbwR+6O7/k4d99wLui/oROgB/dfeJediuiEjpeeONxpFBM2aEjuIjjoCvfCUkgVNPbdOQ0XzIOezU3e8G7jazvaP36/O1Y3efCwzI1/ZEREqKO8ye3ZgE5ket4QMGwHe+E5JA//5hQogSEWc+hLwmAhGRirVjBzz7bOPIoCVLwq/+00+Hn/wkjAyqrk46yqxiJQQREcniww9hypTGkUGrVoX2/3POCfcNDB8OPXsmHWUsSggiIi31wQcweXJIApMnw4YNsPfecOGFoSnoggvC+zITZ4KcboTpM6vc/T/M7EignzqARaRdee+9cAVQXx+uCLZuhYMOgs9/vnFkUJcuSUfZJnG6tH9HqDs0KHq/DGhT2QoRqTwVOVXm4sXwox+FPoBevcJ0bwsXwrXXhruI33kHfvWrcK9AmScDiNdkdLi7X2JmlwK4+2azEuoWF5HEVcxUme4wd27jyKC5c8Py44+HW28NVwLHHltSI4PyKU5C2BrdOOYAZnY44YpBRATIPVVmySeEHTvg+ecbRwYtXhxO+IMHh6uDkSPhsMOSjrIo4iSEW4FHgD5mNhYYDHypkEGJSHkpu6kyt2yBqVNDEhg/HlauDCODhg4NVUSHDw/9A+1MnAlyHjezl4GBgAHXu/vqgkcmImWjqio0E2VaXjLWr4eHHw5JYNKk8H6vvWDYsNAUNGxYqCHUjmVNCGZ2YpNFK6LnKjOrcveXCxeWiJSTO+7YtQ8BSmSqzJUrw8igceNCFdEtW8I9AZ/9bEgCQ4dC164JB1k6cl0h/CjHZw4MyXMsIlImxo7dfVrMuroSmSpzyZLGTuFnn4WGhjDs6eqrQ3/A4MHQsWMCgZW+XMXtzipmICJSmpqe/IcNg/vu231EUV1dOBcXnXuoE5RKArNnh+XHHBMC/9SnwiihCh0ZlE9ZJ8jZuUKY/+Bq4HTClcHTwC/d/cPCh7crTZAjUlxNh5NCOK9mOm307VvEhNDQECqGppLAokUhsEGDQlPQyJGhkqgA+ZkgJ+X3wHogVfL6UsJ8CJ9pfXgiUg4yDSfN9huy4COKtm4NcwekRga9+y507gxDhsA3vgEjRoQ5BaTV4iSEfu5+fNr7aWY2p1ABiUjpaMlJviAjijZsCLOIpUYGrVsHH/lIqBVUWxtqB+27bwF23D7FSQj/Z2YD3X0GgJmdCjxb2LBEpBRkG07atNkoryOKVq+Ghx4KSeCxx8LIoB49Ql9AbS2cfTbsuWeedibp4iSEU4Evmlnqt0IVsMDM5gHu7scVLDoRSVS24aSXXx6KfOZtRNFbb4WhofX1MH166CPo0weuuCIkgdNPh04qzlxocY7w+YXYsZn1IfRPHAw0AHXu/t+F2JeItE7qJJ/34aTusGBBY6fwrFlhef/+8K1vhU7hE0/UyKAia3aUEYCZ7Qf0IS2BtPXGNDPrBfRy95ejKTpnASPd/dVs39EoI5Ey1tAAL77YWDPo9dfD8oEDw1VAbS0ceWSyMVaovI0yMrPbCLWLFhEVuCMPN6a5+wqiu5/dfb2ZLQA+CmRNCCJSZrZtgyefbBwZtHx5aPo566wwufyIEXDIIUlHKZE4TUafJZTA3lqoIMysGhgAvFCofYhIkWzcCI8+GpLAxImwdm3oeDj//MaRQfvtl3SUkkGchDAf6A6sLEQAZrYX8ADwFXf/IMPno4HRAFUlVSlLRHZ6//1dRwZt3gz77x+uAGpr4dxzNTKoDMS5U7kGGE9IDDvnQXD34W3euVlnYCLwqLv/uLn11YcgUkKWLWscGfTUU2Fegd69Q4dwbS2ccYZGBpWIfN6pfB9wFzCPMBooL6JZ1+4BFsRJBiJSeJmK1u0yoih9ZFDqx9lRR8ENN4QkUFOjkUFlLE5CWO3uPyvAvgcDXwDmmVlUjYpvufvkAuxLRJqIU7Tuiv9ooMeimZy/OUoCCxeGD085Be68M1wNHHVUcn+E5FWcJqMfE5qKJrBrk1HR50NQk5FIfuQqWteJbZzBdGqpZyTj6M07oVz0mWeGq4ARI0LTkJSNfDYZDYieB6Yt03wIImUm/YqgQ4fQ5J+yJ5s41x+jlnou5iH2559sYk8e5TzG8D3uW3lR6CSWihZnCk3NiyBS5ppeEezYAd35JxcxkVrqOZ9H6MZm/kl3HuJi6qnlUc5jM93o2xdQLmgXYg0BMLMLgf7Azrnm3P27hQpKRPIrVca6F8sZyThqqedMnqQz21nGR/ktX2YcI5nOJ9lG553fK4lpMKVo4typ/EugG3AW8Bvg08CLBY5LRPJl4UIuXVrPCMYxMLr38zX68UO+Tj21zKQGpwPdusG/57tonZSVOFcIp7n7cWY2192/Y2Y/Ah4sdGAi0kruoVhcanjoggXcCbxEDWO4nQf5FK/xcSCaWrgB+urkL8RLCJuj501mdgiwBji0cCGJSItt3w5PP91YOO7tt8PZ/owz4KqrqPeRXHZTn93KWNfVKQlIozgJYaKZdQd+ALxMGGH064JGJSLN27wZHn88JIGHHoI1a6Br11Am4rvfhYsvDhPLALVAXY8ClLGWihKr/PXOlc26AF3dfV3hQspO9yFIu7d2bZhKsr4+TC25cSN07w4XXRTuETjvvDDFpEiauPchdMixgZPN7OC0918E/grcZmYahCZSLMuXwy9+EX759+wJl10Gzz0HX/xiKCS3ciX84Q9hiskoGYwdC9XV4X6D6urwXqQ5uZqMfgWcDWBmZwDfB64FTgDqCKONRKQQ/vGPxk7hGTPCsiOOgK9+NVwJnHpqONtH0m86239/WL8etkYF65cuDfcggJqIJLdcCaGju78fvb6EMMXlA8ADabWHRCQf3GH2bHjwwZAEXnklLD/xRLjttpAEjj56Z+G4XAlgzZrdN79pU1hfCUFyyZkQzKyTu28HhhLNSRDjeyISx44d8MwzjSODli4Nv/o/8Qn46U9D4bi+fXf7WtO7jjMlgEzeeiuPsUtFynVivx94ysxWE4aePg1gZkcAiXQqi5S9Dz+EJ54ISWDCBFi9Grp0gXPOgVtuCSODevbc7Wu56hDFpfmlpDlZE4K732FmU4BewGPeOBypA6EvQUTiWLcu3P774IPw8MNhZNA++4SpJGtrw9SSe++d9euZ6hC1lEpQSBw5m37cfUaGZa8XLhyRCvHee2FS+fp6mDIlTDZ/0EGhEb+2FoYMgT322Ll6prkJUiUkWnNF0LlzyDnvv697DiQ+9QWI5MvixY0jg557LnQUH3YYXHddSAIDB0a1IpofFfSLXzRuNk4yUAKQfFBCEGktd5g7tzEJzJ0blh9/PNx6a0gCxx6725SSre0UbqpjR2hoUAKQ/Ek0IZjZb4GLgJXufkySsYjEsmNH+PWfmlz+zTfDCf/00+HHPw4jgw7NXeorVYq6LVSHSAoh6SuEe4G7gd8nHIdIdlu2hH6A1MiglStD+//ZZ8O3vgXDh8OBB8beXGuHf+qKQAot0YTg7tPNrDrJGEQy+uCDMCKovj707q5fH0YCDRsWmoIuuCA02rdCVVXoJ2gJXRFIMWStZSTS7qxcCb/+dTjp9+wJn/scTJsWnidNglWr4M9/hksuaTYZNK0ldPXVje83bNhlgBEQOoV79AitT337wlVXhefUeyUDKYakm4yaZWajie6SrtKdNZJvb77Z2Cn87LOho7i6Gv7zP0OxuEGDdo4MSpdrmGhzo4bWrGlMABoVJKWkReWvCxJAaDKaGKdTWeWvpc3cYd68xiQwZ05YftxxoUO4tjaMEmoyMihd01FCrdW3LyxZ0rZtiMQRt/x1yV8hiLRZQwM8/3xjEli8OJzwTzsNfvjDkAgOP3y3r2W7Cmhp+382qi0kpSbpYaf3A2cCB5jZMuBWd78nyZikQmzdClOnhgQwfny4c7hzZxg6FG64AUaMgIMPzvr1plcBTZt98kEtoFJqkh5ldGmS+5cKs2FD48igSZPCSKG99gojgmprw0/8ffeNtal83CuQi2oLSSlSk5GUt9Wrw70B9fVhfuEtW+CAA+DTnw6dwkOHhnmGM8jVMdzWrrWmpSTSt61OZClVSghSfpYubbxT+OmnG+/WuvLKcCUweDB0yv1PO59NQn376oQvlUEJQUqfO7z6amOn8Msvh+XHHBPuFK6thQEDGPsnY8zlmX/x56OCaFO6WUwqTeLDTltCw04rV9PmmwsvaGDFuBcY9G49n+5Uz6Hb3wDgeQYyrfunOObmkaw/+MisFUPzyUzNPlLeNOxUykaq+Wbbpq2czZPULq1nxC/Hcwgr2EYnpm4fwl18jfGM4F16wVrofFM4UeeaRzgfdK+AtCdKCFJ06VcD/Xpv5NR/PsKvNtVzIZPYj7VspBsPcwH11DKJC1lH9922sW1b4ePUSCBpb5QQpKAyjeR56N41DN38ELXUc+7bj7EnH7KaHoxjJPXU8jjn8CF7FiW+9AqiahKSds/dy+Zx0kknuRTGH//o3revu1l4/uMfW7686bKrrnLv1s0d3Puw1K/lv30qZ/o2OrqDL6WP/5Tr/JNM845s89B7XLxHt26Nf49IJQNmeoxzbOIn+ZY8lBDaJtfJPXXiTj9Zpp/Qm1veubP7HnukL2vwo3nFv8Xt/hIn7fxgPkf7bYzxE5np0NDqk/nu+wvLevTYNSE1TVCZ/n6RSqeEUIGyndDjrJPtpJ9aP9NJt2PHli03dvgpzPA7+aa/xsd2fvA8p/oNfN+PZGHWE3yPHrlP3plO5nGOh4goIZSd5k5uuU7ocdbJdtJP7bO1v9Q7sdWH8rjfzdW+jEPcwbfSyR/jbL+Kn/shLNs9cVjuv0NE8ksJoYzEOdnnOqHHWSfbST+VgFpyJbBXh40+kgf9Pr7ga9jPHXwje/oD1Ppl/N67837Ok7+abkSKSwkhD9rSJNGS78Y52ec6ocdZJ9c+4vQh7Mca/wL3+fiOI31Lpz3dwdewn/+Oy30443yfTht3a9PXyV+kNCghtFGcX+35+m6ck31brxCaiyljAlu2zF+8/G5/uuvQnSODNu73UfdrrvHHb5rih1dtVZu+SBloFwmhkCegOCfgfH03zvpt7UNIfd7s8VqwwP1733M/+eTGjRx1lPuNN7q/+KJ7Q0PzB0BESkrFJ4S2/IKPI86v9nx9N+7f0pZRRlk1NIQT/U03hRN/KoCTTw6JYcGC5v9gESlpcRNC2Ra3q67OPJVhvmrPtGX7rflu0zt6C3qX7PbtMH16qBw6bhwsWxZu2f3kJ0Pl0JEjoXfvAu1cRIotbnG7DsUIJhszO9/MFprZG2Z2Y0u+m20+2nzNU3vHHaGWTbq4tW1a891Ro0KyaGgIz3lPBps3h6kkv/QlOOigMHHMb34DJ50E994bppicMgWuuUbJQKSdSqyWkZl1BH4OnAMsA14yswnu/mqc71dVZf4Vnq95alMn5Nb8am/Ld/Nq7VqYODFcCTzySJgNpnt3uOiicCVw3nnwkY8UOSgRKVWJNRmZ2SDg2+5+XvT+JgB3vzPbd9KbjJrOeAWasASA5cvDlUB9PUybFpqHDjkkNAPV1oZmoc6dk45SRIqoHOZD+Cjwdtr7ZcCpcb9cMr/CS8HrrzdOKTljRlj2sY/B174WksDJJ4cpwkREckgyIViGZbtdrpjZaGA0QFWT9qBRo9ppAnAP00imppR8NWplO+kkuP32kAQ+/vEwg4yISExJJoRlQJ+0972B5U1Xcvc6oA5Ck1FxQitB27fDM880jgxKTQx8xhlwxRWhSShfHSgi0i4lmRBeAo40s0OBd4DPAZ9PMJ7S8+GH8PjjIQlMmBDmiezSBc45B269FS6+GHr2TDpKEakQiSUEd99uZtcAjwIdgd+6+ytJxVMy1q2DSZNCEnj4Ydi4EfbZp3Fk0Pnnw157JR2liFSgRKfQdPfJwOQkYygJ777bODJo6tQwYfDBB8Nll4UkcNZZsMceSUcpIhVOcyonZdGixk7h558PHcWHHw7XXx+SwMCBGhkkIkWlhFAs7jBnTmMSmDcvLB8wAL7znZAE+vfXyCARSYwSQiHt2AHPPdeYBJYsCb/6Tz8dfvKTMDKoujrpKEVEACWE/NuyBZ54onFk0KpVof3/nHPg5pth+HCNDBKRkqSEkA8ffACTJ4ckMHkybNgAe+8NF14YmoIuuCC8FxEpYUoIrfXee+EKoL4+VAnduhUOPBAuvTQkgSFDwj0DIiJlQgmhJd58s7E/4NlnQ0fxoYfCtdc2jgzq2DHpKEVEWkUJIRf3MBoolQTmzAnLjz8+3ClcWwvHHquRQSJSEZQQmtqxI9wXkKoZtHhxOOEPHgw/+lEYGXTYYUlHKSKSd0oIEEYGTZ0aksD48bByZRgZNHQo3HhjGBl00EFJRykiUlDtNyGsXx9qBdXXh9pB69eHGkHDhoWmoGHDQg0hEZF2on0lhJUrw8igcePCvQJbtoR7Aj772ZAEhg6Frl2TjlJEJBGVnxCWLNl1ZFBDA/TtC1ddFZLA4MEaGSQiQiUmBHeYP78xCcyeHZYfe2yYb7O2Fk44QSODRESaqIyE0NAQ5hJOJYFFi8IJf9Ag+MEPwsigI45IOkoRkZJW/gmhvh6uvjrMKdC5c7hD+BvfCCODevVKOjoRkbJR/gmhT59QPTQ1Mqh796QjEhEpS4kkBDP7DPBt4OPAKe4+s9Ubq6mBv/0tT5GJiLRfSU3JNR/4FDA9of2LiEgTiVwhuPsCANNIHxGRkqFJe0VEBCjgFYKZPQEcnOGjMe4+vgXbGQ2MBqiqqspTdCIi0lTBEoK7n52n7dQBdQA1NTWej22KiMju1GQkIiJAQgnBzGrNbBkwCJhkZo8mEYeIiDRKapRRPVCfxL5FRCQzcy+fZnkzWwUsjbn6AcDqAobTFoqtdRRb6yi21qmk2Pq6e8/mViqrhNASZjbT3WuSjiMTxdY6iq11FFvrtMfY1KksIiKAEoKIiEQqOSHUJR1ADoqtdRRb6yi21ml3sVVsH4KIiLRMJV8hiIhIC1RMQjCzH5jZa2Y218zqzSzjTDlmdr6ZLTSzN8zsxiLF9hkze8XMGsws68gAM1tiZvPMbLaZtX6OiMLElsRx29/MHjezf0TP+2VZb0d0zGab2YQCx5TzOJhZFzP7S/T5C2ZWXch4Whjbl8xsVdqx+vcixvZbM1tpZvOzfG5m9rMo9rlmdmIJxXamma1LO263FCmuPmY2zcwWRP+PXp9hnfweN3eviAdwLtApen0XcFeGdTq5ixoNAAAHr0lEQVQCi4DDgD2AOcDRRYjt40A/4EmgJsd6S4ADinzcmo0tweP2/4Abo9c3ZvpvGn22oUjHqtnjAFwN/DJ6/TngLyUU25eAu4v57ytt32cAJwLzs3w+DHgYMGAg8EIJxXYmMDGBY9YLODF6vTfweob/pnk9bhVzheDuj7n79ujtDKB3htVOAd5w98XuvhX4MzCiCLEtcPeFhd5Pa8SMLZHjFu3jvuj1fcDIIuwzlzjHIT3mvwNDrTgTfyT13ygWd58OvJ9jlRHA7z2YAXQ3s6JMih4jtkS4+wp3fzl6vR5YAHy0yWp5PW4VkxCa+DIhazb1UeDttPfL2P0AJ8mBx8xsVlT2u1QkddwOcvcVEP7nAA7Msl5XM5tpZjPMrJBJI85x2LlO9ANlHdCjgDG1JDaAf4maFv5uZn2KEFdcpf7/5iAzm2NmD5tZ/2LvPGp6HAC80OSjvB63RGoZtVacORbMbAywHRibaRMZluVlmFWe5n8Y7O7LzexA4HEzey369ZJ0bIkctxZspio6bocBU81snrsvykd8TcQ5DgU7Vs2Is9+HgPvdfYuZXUm4khlS8MjiSeq4xfEyofTDBjMbBowDjizWzs1sL+AB4Cvu/kHTjzN8pdXHrawSgjczx4KZXQ5cBAz1qIGtiWVA+q+i3sDyYsQWcxvLo+eVZlZPaAZoc0LIQ2yJHDcze8/Mern7iugyeGWWbaSO22Ize5LwS6oQCSHOcUits8zMOgH7UpzmiGZjc/c1aW9/TehrKxUF+zfWVuknYXefbGb/a2YHuHvB6xyZWWdCMhjr7g9mWCWvx61imozM7Hzgm8Bwd9+UZbWXgCPN7FAz24PQ6VfQUSlxmdlHzGzv1GtCJ3nGUQ8JSOq4TQAuj15fDux2NWNm+5lZl+j1AcBg4NUCxRPnOKTH/GlgapYfJ0WPrUnb8nBCm3SpmAB8MRo1MxBYl2ouTJqZHZzqBzKzUwjnzTW5v5WX/RpwD7DA3X+cZbX8Hrdi95wX6gG8QWhLmx09UiM9DgEmp603jNBbv4jQZFKM2GoJmXwL8B7waNPYCKND5kSPV0optgSPWw9gCvCP6Hn/aHkN8Jvo9WnAvOi4zQP+rcAx7XYcgO8SfogAdAX+Fv17fBE4rBjHKmZsd0b/tuYA04Cjihjb/cAKYFv07+3fgCuBK6PPDfh5FPs8cozGSyC2a9KO2wzgtCLFdTqh+Wdu2nltWCGPm+5UFhERoIKajEREpG2UEEREBFBCEBGRiBKCiIgASggiIhJRQpCiM7MeaZUj3zWzd6LXa82sUPcQZIvlhOju09T74Zkqhcbc1pLoXoimy/c1s9+b2aLoMdayVG5ti1x/i5l928y+nu99SmVRQpCic/c17n6Cu58A/BL4SfT6BKAh3/uL7hjO5gTC2O5UbBPc/ft5DuEeYLG7H+7uhxPuUbg3z/uA4vwtUsGUEKTUdDSzX0f13x8zsz0BzOxwM3skKvz3tJkdFS3va2ZTooJtU8ysKlp+r5n92MymAXdFd4L/1sxeMrP/M7MR0R293wUuia5QLrEwZ8Dd0TYOsjC3xpzocVq0fFwUxyvWTBFCMzsCOAm4LW3xd4HjzayfhVr7E9PWv9vMvhS9viWKd76Z1aXdLfukmd1lZi+a2etm9onm/pYmMWU7lp+J9jXHzNpcMkXKjxKClJojgZ+7e39gLfAv0fI64Fp3Pwn4OvC/0fK7CeV/jyMUNPxZ2rY+Bpzt7l8jFMub6u4nA2cBPwA6A7cQ5iw4wd3/0iSWnwFPufvxhHr5r0TLvxzFUQNcZ2a5qpkeDcx29x2pBdHr/yPMRZHL3e5+srsfA+xJqNOV0sndTwG+AtzqoeR1rr8lXbZjeQtwXvT3Dm8mNqlAZVXcTtqFN919dvR6FlBtodrjacDfrHFqgS7R8yDgU9HrPxAm1Un5W9qJ+FxgeFo7elegqplYhgBfhJ0n8XXR8uvMrDZ63YeQxLLVtjEyV5+MM0fCWWZ2A9AN2J+QkB6KPksVOpsFVMfYVthp7mP5LHCvmf01bfvSjighSKnZkvZ6B+GXcQdgbdTP0Jz0k+/GtNcG/Is3mQzIzE5tSXBmdiZwNjDI3TdZqK7aNcdXXgEGmFkHd2+IttEBOI5QVrmKXa/Uu0brdCX8cq9x97fN7NtN9pM6Tjto2f/HWY+lu18ZHY8LgdlmdoLvWiFVKpyajKTkeSg//KaZfQZ2ziN7fPTxc4TKngCjgGeybOZR4Nq0dvgB0fL1hOkJM5kCXBWt39HM9iGUs/5nlAyOIkxbmCv2NwjNQzenLb4ZmOLubwFLgaMtzMW8LzA0Wid18l8d/ar/dK79xPhbUvFkPZZmdri7v+DutwCr2bWssrQDSghSLkYB/2ZmqWqwqekhrwP+1czmAl8AdpuIPHIboc9groXJ1FOdvNMIJ+TZZnZJk+9cT2i2mUdomukPPAJ0ivZ3G6H6ZXO+TChN/YaZrSIkkSsB3P1t4K+EipZjCckDd19LmLNgHmFClpdi7CfX35Iu27H8gZnNi47PdEJ1T2lHVO1UpIjMrB8wmdCpOznpeETSKSGIiAigJiMREYkoIYiICKCEICIiESUEEREBlBBERCSihCAiIoASgoiIRP4/bzvOn+quhmMAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"foo = sm.qqplot(np.exp(np.random.normal(size=50)),line=\"q\")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/anaconda/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEKCAYAAAAMzhLIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4XHd97/H3R7JjW9m9ZHMiKXZsSyEXQhCBhLIvoQaSG0KaEl0IhdY3pSy9t72Fe90LNMEPpdD2lqaFipYSilgCaZoAYQtL4EKh2MHZkOzYseU4CbGdxbGjxJu+/eOckUbSzNFImk2jz+t59MzMmTMzX50489FvOb+jiMDMzKyYploXYGZm9c1BYWZmmRwUZmaWyUFhZmaZHBRmZpbJQWFmZpkcFGZmlslBYWZmmRwUZmaWaU6tCyiHxYsXR3t7e63LMDObUTZs2LAnIpZMtF9DBEV7ezvr16+vdRlmZjOKpIFS9nPXk5mZZXJQmJlZJgeFmZllclCYmVkmB4WZmWVyUJiZNajeXmhvh6am5La3d2rv0xDTY83MbLTeXlizBgYHk8cDA8ljgO7uyb2XWxRmZg1o7dqRkMgZHEy2T5aDwsysAe3YMbntWRwUZmYNqLV1ctuzOCjMzBrQunXQ0jJ6W0tLsn2yHBRmZg2ouxt6eqCtDaTktqdn8gPZ4FlPZmYNq7t7asEwllsUZmY1Uq7zHCrNLQozsxoo53kOleYWhZlZDZTzPIdKc1CYmU3DVLuPynmeQ6U5KMzMpijXfTQwABEj3UelhEU5z3OoNAeFmVmeybQQptN9VM7zHCrNQWFmlppsC2E63UflPM+h0hQRta5h2rq6umL9+vW1LsPMZrj29iQcxmprg+3bp79/vZG0ISK6JtrPLQozs9RkWwgzqftoOhwUZmapyQ4wz6Tuo+lwUJiZpabSQujuTrqZhoaS20YLCXBQmJkNmy0thMnyEh5mZnnKtZBeI3GLwszMMjkozMwsU912PUnaDuwDjgCHS5nra2Zm5Ve3QZF6eUTsqXURZmazmbuezMwsUz0HRQDfkbRB0pqxT0paI2m9pPW7d++uQXlmZrNDPQfFiyLiPOA3gT+Q9JL8JyOiJyK6IqJryZIltanQzGwWqNugiIiH0ttdwE3A+bWtyMxsdqrLoJB0tKRjc/eB1wD31LYqM7PZqV5nPZ0M3CQJkhq/EBHfqm1JZmazU10GRUTcDzyn1nWYmVmddj2ZmVn9cFCYmVkmB4WZmWVyUJiZWSYHhZmZZXJQmJlZJgeFmZllclCYmVkmB4WZzRq9vdDeDk1NyW1vb60rmhnq8sxsM7Ny6+2FNWtgcDB5PDCQPAbo7q5dXTOBWxRmNiusXTsSEjmDg8n2hrN/P6xfD5//fPIL/vSn03o7tyjMbFbYsWNy2+teBOzaBf390NeX/OTuP/DAyH7NzXDKKXDhhVP+KAeFmTWE3t7kj+cdO6C1FdatG92l1NqadDeN1dpavRqn5MiRpPBcGOQHwuOPj+x39NHQ0QEvfSl0dib3Ozth+XI46qhpleCgMLMZo1gYlDL+sG7d6H0AWlqS7XXhmWdg8+bxYbB5c/JczkknJQFwxRUjYdDZCUuXJqP0FeCgMLMZISsMssYfckGRu81qdVTF44+PD4O+Pti2LelOApDgzDOTAHj1q0fCoKMDFi6scsGgyBU2g3V1dcX69etrXYaZVVB7e+Guo7a25Iu/0FeZBENDFS9tvAjYuXN8GPT1JeMKOfPmwapVo1sGHR2wciUsWFDxMiVtiIiuifZzi8LM6kqx7qWsweiajT8cOgRbtowPg/5+eOqpkf1OPDEJgde/fnQgtLcng811zkFhZjVRKBCgePdSVhhUfPxh376RMMgPha1b4fDhkf3OOCMJgHe8Y/SA8kknJc2bGcpBYWZVV2y8YcGC4mMNWWFQlvGHCHjkkcLjBw8+OLLfnDmwYgWcfTZcdtlIIKxaBcceO6XjUe88RmFmFTe29bB/Pzz6aOmvz401TDQFtiRHjiQDx4W6i554YmS/Y44Z3SrI3V++HObOneSH1qdSxygcFGZWUWNbD1PR1gbbt0/yRU8/DZs2je8y2rwZDhwY2e/kk0eCID8Yli6d0d1FpfBgtplVXaG/+AtNXS1m0aLk+31SYw2PPjq+q6i/P0mW3B/CTU0j000vumh0KJx44lR/3VnDQWFmZVFs3KHUkGhpgb/5m+T+uO6lNw/BwAOFu4t27x55k9x00/PPh6uuGj3ddP788v7Cs4i7nsysLIqd59DcnAwLjLVoUTIMMCoQLj8I9903vnXQ3z86cXLTTcd2F7W1zYjppvXCXU9mVlFju5kKhQQkIdHSMvp7/uQFT/LZ9/Tz2ra8LqNr+uCqraNT5YwzkgD4vd8bHQhLljT8+EE9cVCY2YTGhsLq1XD99aO7maSxZ0cHp/IwLz2pn//5m3386l/7WLqvn3Oa+zjl6Yfgg+luc+cm003POQcuv3wkDFatSpocVnPuejKbZQp96d966/gT33L7LFyYnG928ODIe+SHQjOHOZNtdNJHJ/100EcnfXTQzwnsHXlRbrrp2O6iZcsaZrrpTFO26bGSlgM7I+KApJcBzwY+FxFPZL6wihwUZqUpZarq3LlJEOQHA8ACBlnFJjroT0MhCYOVbGYeIzs/0nwq9x7pYOcxnXS+sZPnvyUNhNNOc3dRnSnnGMWNQJeks4B/Am4BvgCsnl6JZlZuE7UW9u+feBbScYf2DIdAfiC0MUATyR+WR2jifpbRRyff5DfTvToZPKODu3acwMlV+F2tekoJiqGIOCzpUuD/RcTfSvplpQszs4nlB8PYLqKBAfjkJ0f2zR9sFkO0sqNgICxhz/B+gyygnw7+nQv4DG8f7li6jxUc0rxRYxItLdDzkQr/wlYTpQTFIUlvBq4C3pBuc4eiWQ1kBUOhJTGO4gBnsWU4CHJhsIpNHM1I02I3i+mng5u4dNRIww5aCcZfDKelBd5x1fixjapf28GqopSg+B3gamBdRGyTdCbw+cqWZdaYJuoaynqcFQzHsXdcy6CTPpZxP3MYmW66nTb66OR2XpoXHZ08yuLhfQqNUcydC8cdB4895lCYjUqa9SRpAdAaEZsqX9LwZ74W+BugGfjHiPjzYvt6MNvqWS4cCk8hnYzgNB4aFQS529N4eHivg8xlMytHtQz66WATqxjk6HEnuk0068nB0LjKNpgt6Q3Ax4GjgDMlnQtcExEXT7/Mop/ZDPwd8GpgJ/ALSbdExK8q9Zlm5ZLVPVRKSDRzmGXcX3D84HieHN5vL8fRRyff5qK8SamdbONMjhT5Xzu3TEYpX/oOBssppevpQ8D5wA8BImJj2v1USecDWyLifgBJXwIuARwUVncmO26Q08JT46abdtLHCu7jKA4N7/cgp9FPB//CW0a1Eh7mVGD0dNO5c+GEvC6iQq0FB4BNVilBcTgi9mr0/OdKn6W3FHgg7/FO4AX5O0haA6wBaK349Q5tNpnMOEIpwbCY3QVbB+2MTEM6QhNbWU4fnXyNN4zqMnqS44vW6rEDq4ZSguIeSVcCzZJWAO8BflrZsih0Vs7oxQEieoAeSMYoKlyPNZCsIChlimn+41wwiCHaGCgYCIsZSY+naGETq/gJL+If+d3hQNjCWRxk3oS1OxisFkoJincDa4EDwBeBbwPXVrIokhbEGXmPTwceqvBnWoOYThBMdNW1eTzDCu4bN6C8ik208PTwfrtYQh+d3Mhlo7qLHuAMUBMRyUKnq1fD+lvh0A5oK2EWlIPBaqEu13qSNAfYDLwSeBD4BXBlRNxbaH/PeprdssYIpup4nhg3dtBJH2eyjWaGABhCDKTTTfMHk/vo5DEWDb+XWwFWr6Y960nS18gYi6jkrKf0TPB3kbRemoHPFAsJm93Grl00meswQ7CUB8dNNe2kj1P59fBeBziKzazklzyXL3DlcBhsZiVP0zLuXefOhUUOBmsgWV1PH69aFQVExK3ArbWswerP2G6lUtYumsOh4emm+WMHHfRzHPuG93uC4+mjk2/x2lGtg+20F51uCm4xWOMr+q8/Im6vZiFmEyl0qc18R7OfVWwa1zo4iy2jppvuZCl9dHI9V40KhEc4GdC4L/41HjewWS6r6+mGiPgtSXdToAsqIp5d0cps1hnbWhh7hnBTExw5EixJp5uODYTWvBnVh2kenm56M5cMh0E/HRyYe+yoIFi9GrbdCvIXv1lBWV1P701vX1+NQmx2meiKaQ8MHOGatyXTTd90OA2EI8nX/UIeH36f/RxNPx38iJcMh8HWOR3sOu4sHnn8qOH3/pFbAGZTltX1lFs85p0R8b785yR9FHjf+FfZbDdRq2BsKMznaY4buI/HPtnH/8prIaxkMwsOPzP8vo9wEn10cgO/Naq76EGWsnBR06i1ixwEZuVVyhXu7oiI88Zsu6ueup48PbY+FLp6Wm4l0paDj+d9vY9MJj2TbcMXwxlCbKe9wF6dPM7Cgp/Z0gI9PQ4Gs6kox/TY3wfeCSyTdFfeU8cCP5l+iTaTFWo5rP0/wcLBnVyYf/7BoaSVcAqPDL/2GeaxmZWsp4vP899GTTd9hgUTfnZzMwwNufVgVi1ZYxRfAL4JfAR4f972fRHxWEWrsrr2hesP8ZdXb+G8Z/q4kn46B/rofGsfdw9t4lj2D+/3OCfQRyff4HWjWgjbaWeI5nHvKzFq2kSh6yK4BWFWfVljFHuBvcCb02W/T073P0bSMRGxo0o1Wq3s2webNkFf38hPfz+X92/hSg4P7/YAp9M31MlP9Dv8KkY6mHZxEoWX7Rp/XYaWFriqwBXTwNdFMKu1Uq5H8S6SpcYfgXTtguTvvroZo7BpiIBdu8aFAX19sHPnyH5z5sBZZ0FnJx/vv5RfpWGwiVXs59j0vZIv/EJjFGNbBYVCoVgAOBjMaquURQH/EFgVEZNaHMHqzJEjsH37+DDo64Mnnhjebb+O4UB7B4te/nLo6OD2XZ1c85VOfvzQck57ei7rLoN/uGP8yW6QLHK3bt3Es57cKjCbWUqZ9fQD4NURcThzxxryrKc8Tz8NmzePD4PNm+HAgZH9Tj4ZOjvZ3NxBz486ufNQMoawk9NpaRE9PcluY2cx5VoD+ec85LZ77MBsZinbpVCB+4EfSvoGyVLjAETEX02jPpuuxx4bHwb9/bBt20jnvwTLlkFHB1x0EXR2Jvc7O+HEEwF4TTsMHBr91oODSQsgd3/sc7femoSCWwlms0MpLYoPFtoeEX9WkYqmoGFbFENDyThBoUDYtWtkv3nzYNWqJADyw2DlSpg/Hyg8nbW7O1kWo9A/gdwFDYs9NzQ0fruZzSxla1HUUyA0rIMHYcuW8eMHmzbBU0+N7LdwYRIAb3jD6FBoa6P3S81JENyQFwTpdINCi+mtWZPcb20tPN6Qu7ps1nNmNjuUMutpCfAnwLOA+bntEfGKCtbVmJ58cnzLoK8Ptm5NBptzWluTAHjxi0e3EJYsGflTP09WEHR3Jy2JQl1Ia9cmgVJoHCI3CJ31nJnNDqWMUfQCXyZZHPBq4CpgdyWLmtEi4Ne/Ljy76KG8q7nOmQMrVsA558Cb3jTSQli1Co45ZlIfmRUE3d1Jd1MhO3aMjCtkjTd4LMJsditljGJDRDwvf30nSbdHxEurUmEJajJGcfhwMnBcaPxg796R/Y45ZnSrIPezbFlykkEZZI0zDA1Be3vx6azbt5elBDObgco56yk3J+ZhSa8DHgJOn05xM8rg4MjZyfmBcN99o88iO+WUJACuvHL0+MHSpQW7i8pponGGibqXzMyylBIUH5Z0PPBHwN8CxwH/o6JV1cKePYVbBwMDI3+uNzWNTDddvXqkldDRMTzdtBYmCoJSupfMzIqZsOtpJii562loKPmmzA+DXCDs2TOy34IFyVjB2O6is84anm5aLcWmtU51PzOznFK7nkoZo/hnCl8K9e1TL6+8CgbFoUNw882jw2DTptF/di9aNH78IJ1uSlNTdX+JAgpd38FnQJtZuZQzKC7LezgfuBR4KCLeM70Sy6dgUBw5knyrHjyYfPGPPRmtsxMWL65NwSXyILSZVVI5T7i7ccwbfxG4bRq1VUdzM2zcmHyrtrTUupopyZrWamZWLVPpX1kBzIxzczs7Z2xIQPEzoH1mtJlV04RBIWmfpCdzt8DXgPdVvjRbt258znlaq5lV24RBERHHRsRxebcrx3ZH2eT09ibjD01NyW1vb+H9uruTgeu2tuRUjLY2D2SbWfVljlFIWgB0A2enm9YDX42Ig8VfZVkmWpdprO5uB4OZ1VbRFoWk/wL0AS8GtgMDwEXATySdIOnDVamwwWSty2RmVo+yWhSfAH4vIr6bv1HSq4B7gHsrWVij8kwmM5tpssYoTh0bEgARcRvJ+k+XVqyqBuaZTGY202QFRZOkeWM3SpoPHIqIwQKvsQl4JpOZzTRZQfE54EZJ7bkN6f0bgH+pVEGSPiTpQUkb05/VlfqsWvBMJjObaYqOUUTEhyW9C/iRpNzfwE8BH4+Iv61wXX8dER+v8GfUjGcymdlMkjk9NiKuA66TdGz6eF9VqjIzs7pR0hIeEbGvyiHxLkl3SfqMpNpd6MHMzKa01tO0SbpN0j0Ffi4BPgksB84FHgb+ssh7rJG0XtL63bt9CW8zs0qp6wsXpYPnX4+Ic7L2q8k1s83MZrhSlxkvZVHAFkn/V9Kn08crJL2+HEUW+bxT8x5eSnJyn5mZ1Ugp18z+Z2ADcEH6eCfwFeDrFarpLySdS3JVve3Af6/Q55iZWQlKCYrlEXGFpDcDRMTTklSpgiLiLZV6bzMzm7xSBrMPpqvIBoCk5cCBilZlZmZ1o5QWxQeBbwFnSOoFXgS8rZJFmZlZ/SjlmtnflXQH8EJAwHsjYk/FKzMzs7pQNCgknTdm08Ppbauk1oi4o3JlmZlZvchqURQ80S0VwCvKXIuZmdWhrEUBX17NQszMrD5NOEaRXn/incBvkLQkfgx8KiKeqXBtZmZWB0qZ9fQ5YB+QW1r8zSTXo7i8UkWZmVn9KCUoVkXEc/Ie/0DSnZUqyMzM6kspJ9z9UtILcw8kvQD4SeVKMjOzelJKi+IFwFsl7UgftwJ9ku4GIiKeXbHqzMys5koJitdWvAozM6tbpZyZPZBeZe6M/P19wp2Z2exQyvTYa0nWdtpKujAgPuHOzGzWKKXr6bdIlho/WOlizMys/pQy6+ke4IRKF2JmZvWplBbFR0imyN5D3nUoIuLiilVlZmZ1o5SguB74KHA3MFTZcszMrN6UEhR7IuITFa/EzMzqUilBsUHSR4BbGN315OmxZmazQClB8dz09oV52zw91sxslijlhDtfl8LMbBYrpUWBpNcBzwLm57ZFxDWVKsrMzOrHhOdRSPoUcAXwbkAk16Foq3BdZmZWJ0o54e7CiHgr8HhE/BlwAcm6T2ZmNguUEhRPp7eDkk4DDgFnVq4kMzOrJ6WMUXxd0gnAx4A7SGY8fbqiVZmZWd0oZdbTtendGyV9HZgfEXsrW5aZmdWLol1Pkp4v6ZS8x28FbgCulbSwGsWZmVntZY1R/ANwEEDSS4A/Bz4H7AV6Kl+amZnVg6yup+aIeCy9fwXQExE3knRBbax8aWZmVg+yWhTNknJB8krg+3nPlXSinpmZzXxZQfFF4HZJN5NMkf0xgKSzSLqfpkzS5ZLulTQkqWvMc/9b0hZJmyRdNJ3PMTOz6SvaMoiIdZK+B5wKfCcictfLbiI5S3s67gHeSDIOMkzS2cBvkywXchpwm6SVEXFkmp9nZmZTlNmFFBE/K7Bt83Q/NCL6ACSNfeoS4EsRcQDYJmkLcD7w79P9TDMzm5pSzsyupqXAA3mPd6bbzMysRio2KC3pNuCUAk+tjYibi72swLYosA1Ja4A1AK2trVOq0czMJlaxoIiIV03hZTsZveDg6cBDRd6/h/R8jq6uroJhYmZm01dvXU+3AL8taZ6kM4EVwH/UuCYzs1mtJkEh6VJJO0mWLP+GpG8DRMS9JMuE/Ar4FvAHnvFkZlZbNTlxLiJuAm4q8tw6YF11KzIzs2LqrevJzMzqjIPCzMwyOSjMzCyTg8LMzDI5KMzMLJODwszMMjkozMwsk4PCzMwyOSjMzCyTg8LMzDI5KMzMLJODwszMMjkozMwsk4PCzMwyOSjMzCyTg8LMzDI5KMzMLJODwszMMjkozMwsk4PCzMwyOSjMzCyTg8LMzDI5KMzMLJODwszMMjkozMwsk4PCzMwyOSjMzCyTg8LMzDI5KMzMLJODYgp6e6G9HZqaktve3lpXZGZWOXNqXcBM09sLa9bA4GDyeGAgeQzQ3V27uszMKsUtiklau3YkJHIGB5PtZmaNqCZBIelySfdKGpLUlbe9XdLTkjamP5+qRX1ZduyY3HYzs5muVl1P9wBvBP6hwHNbI+LcKtdTstbWpLup0HYzs0ZUkxZFRPRFxKZafPZ0rVsHLS2jt7W0JNvNzBpRPY5RnCnpl5Jul/TiWhczVnc39PRAWxtIyW1PjweyzaxxVazrSdJtwCkFnlobETcXednDQGtEPCrpecC/SXpWRDxZ4P3XAGsAWqvc79Pd7WAws9mjYkEREa+awmsOAAfS+xskbQVWAusL7NsD9AB0dXXF9Ko1M7Ni6qrrSdISSc3p/WXACuD+2lZlZja71Wp67KWSdgIXAN+Q9O30qZcAd0m6E/gqcHVEPFaLGs3MLFGT6bERcRNwU4HtNwI3Vr8iMzMrpq66nszMrP44KMzMLJODwszMMjVsUHgpcDOz8mjIZca9FLiZWfk0ZIvCS4GbmZVPQwaFlwI3MyufhgyKYks/eSlwM7PJa8ig8FLgZmbl05BB4aXAzczKpyFnPYGXAjczK5eGbFGYmVn5OCjMzCyTg8LMzDI5KMzMLJODwszMMili5l9uWtJuYGASL1kM7KlQOdPl2qbGtU2Na5uaRqmtLSKWTLRTQwTFZElaHxFdta6jENc2Na5talzb1My22tz1ZGZmmRwUZmaWabYGRU+tC8jg2qbGtU2Na5uaWVXbrByjMDOz0s3WFoWZmZVoVgSFpI9J6pd0l6SbJJ1QZL/XStokaYuk91eptssl3StpSFLRmQqStku6W9JGSevrrLZaHLeFkr4r6b709sQi+x1Jj9lGSbdUsJ7MYyBpnqQvp8//XFJ7pWqZQm1vk7Q77zj9bhVr+4ykXZLuKfK8JH0irf0uSefVUW0vk7Q377h9oIq1nSHpB5L60v9H31tgn/Idu4ho+B/gNcCc9P5HgY8W2KcZ2AosA44C7gTOrkJtncAq4IdAV8Z+24HFVT5uE9ZWw+P2F8D70/vvL/TfNH1ufxVqmfAYAO8EPpXe/23gy1X6b1hKbW8Drqvmv628z34JcB5wT5HnVwPfBAS8EPh5HdX2MuDrNTpupwLnpfePBTYX+O9atmM3K1oUEfGdiDicPvwZcHqB3c4HtkTE/RFxEPgScEkVauuLiE2V/pypKLG2mhy39DOuT+9fD/zXKnxmMaUcg/x6vwq8UpLqpLaaiYgfAY9l7HIJ8LlI/Aw4QdKpdVJbzUTEwxFxR3p/H9AHLB2zW9mO3awIijHeTpKyYy0FHsh7vJPxB76WAviOpA2S1tS6mDy1Om4nR8TDkPxPA5xUZL/5ktZL+pmkSoVJKcdgeJ/0j5a9wKIK1TPZ2gAuS7snvirpjCrUVap6///yAkl3SvqmpGfVooC0G/O5wM/HPFW2Y9cwFy6SdBtwSoGn1kbEzek+a4HDQG+htyiwrSxTwkqprQQvioiHJJ0EfFdSf/oXT61rq8lxm8TbtKbHbRnwfUl3R8TWctSXp5RjULHjNIFSPvdrwBcj4oCkq0laPq+oeGWlqdVxK8UdJEtg7Je0Gvg3YEU1C5B0DHAj8IcR8eTYpwu8ZErHrmGCIiJelfW8pKuA1wOvjLQDb4ydQP5fUqcDD1WjthLf46H0dpekm0i6FKYdFGWorSbHTdIjkk6NiIfT5vSuIu+RO273S/ohyV9e5Q6KUo5Bbp+dkuYAx1Odbo0Ja4uIR/MefppkHK9eVOzf13TlfzFHxK2S/l7S4oioyhpQkuaShERvRPxrgV3KduxmRdeTpNcC7wMujojBIrv9Algh6UxJR5EMOFZslsxkSDpa0rG5+ySD8wVnYtRArY7bLcBV6f2rgHGtH0knSpqX3l8MvAj4VQVqKeUY5Nf7JuD7Rf5gqXptY/qtLybp764XtwBvTWfwvBDYm+tyrDVJp+TGmSSdT/J9+mj2q8r22QL+CeiLiL8qslv5jl0tRuyr/QNsIemr25j+5GafnAbcmrffapLZA1tJul6qUdulJMl/AHgE+PbY2khmrNyZ/txbT7XV8LgtAr4H3JfeLky3dwH/mN6/ELg7PW53A++oYD3jjgFwDckfJwDzga+k/xb/A1hWjeNUYm0fSf9d3Qn8AOioYm1fBB4GDqX/1t4BXA1cnT4v4O/S2u8mY2ZgDWp7V95x+xlwYRVr+w2SbqS78r7XVlfq2PnMbDMzyzQrup7MzGzqHBRmZpbJQWFmZpkcFGZmlslBYWZmmRwUVjckLcpbifPXkh5M7z8hqRLnP2TVcm56tm3u8cWFVl4t8b22p+dxjN1+vKTPSdqa/vSqyCq405H1u0j6kKQ/LvdnWmNxUFjdiIhHI+LciDgX+BTw1+n9c4Ghcn9eeoZ0MeeSzEvP1XZLRPx5mUv4J+D+iFgeEctJzrH4bJk/A6rzu1gDc1DYTNEs6dPp2vvfkbQAQNJySd9KF0v8saSOdHubpO+lC919T1Jruv2zkv5K0g+Aj6ZnvX9G0i8k/VLSJekZzNcAV6QtmiuUXLPhuvQ9TlZyXZM7058L0+3/ltZxryZYuFHSWcDzgGvzNl8DPEfSKiXXOvh63v7XSXpbev8Dab33SOrJOzv4h5I+Kuk/JG2W9OKJfpcxNRU7lpenn3WnpGkvG2Mzj4PCZooVwN9FxLOAJ4DL0u09wLsj4nnAHwN/n26/jmSJ5WeTLAL5ibz3Wgm8KiL+iGSBwe9HxPOBlwMfA+YCHyC5ZsS5EfHlMbV8Arg9Ip5Dcr2Ce9Ptb0/r6ALeIylAIb5DAAACdklEQVRrddizgY0RcSS3Ib3/S5LrgGS5LiKeHxHnAAtI1jDLmRMR5wN/CHwwkqXFs36XfMWO5QeAi9Lf9+IJarMG1DCLAlrD2xYRG9P7G4B2JStnXgh8RSOXdpiX3l4AvDG9/y8kFzrK+UreF/RrgIvz+unnA60T1PIK4K0w/OW+N93+HkmXpvfPIAm3Ymv/iMIreZZyjYqXS/oToAVYSBJUX0ufyy0OtwFoL+G9kg/NPpY/AT4r6Ya897dZxEFhM8WBvPtHSP6SbgKeSMcxJpL/pfxU3n0Bl8WYCzRJesFkipP0MuBVwAURMahkpdr5GS+5F3iupKaIGErfowl4Nsny1a2MbvHPT/eZT/KXfldEPCDpQ2M+J3ecjjC5/7+LHsuIuDo9Hq8DNko6N0avOGsNzl1PNmNFsszzNkmXw/A1gp+TPv1TkpVSAbqB/1/kbb4NvDuvn/+56fZ9JJeYLOR7wO+n+zdLOo5k2fDH05DoILn0ZFbtW0i6mf40b/OfAt+LiB3AAHC2kmttHw+8Mt0nFwp70lbAm7I+p4TfJVdP0WMpaXlE/DwiPgDsYfTS1TYLOChspusG3iEpt7Ju7jKf7wF+R9JdwFuAcRefT11LMiZxl6R7GBlc/gHJF/VGSVeMec17Sbp/7ibp4nkW8C1gTvp515KsJjqRt5MsAb5F0m6ScLkaICIeAG4gWR20lyRUiIgnSK4ZcTfJhXJ+UcLnZP0u+Yody49Jujs9Pj8iWS3VZhGvHmtWByStAm4lGUy+tdb1mOVzUJiZWSZ3PZmZWSYHhZmZZXJQmJlZJgeFmZllclCYmVkmB4WZmWVyUJiZWab/BKI3R9j+Ozk0AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"foo = sm.qqplot(np.random.standard_t(1,size=50),line=\"q\")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/anaconda/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmYVOWVx/HvAUUgJhoEJwZkiSKIe+goLqMkmEhwAUeNIhkwiAwaXGNcBnFBJSpRogKSFhcScUHUgAoqKu6KNorsKBgQBhcEggSUrc/88d7Goqmqvt1dW3f/Ps9TT1fdeuvewwXq9LubuyMiIhJHvXwHICIiNYeShoiIxKakISIisSlpiIhIbEoaIiISm5KGiIjEltekYWb3m9mXZjangnI/M7OtZnZ6rmITEZEd5bum8SDQNV0BM6sP3Ao8n4uAREQktbwmDXd/DVhdQbELgSeAL7MfkYiIpLNTvgNIx8yaA6cCvwB+FuczTZs29datW2czLBGRWmfGjBlfuXuzisoVdNIA/gJc6e5bzSxlITPrD/QHaNmyJSUlJTkKT0SkdjCzpXHKFXrSKAIejRJGU6CbmW1x938kFnL3YqAYoKioSItpiYhkSUEnDXdvU/bczB4EnimfMEREJHfymjTM7BGgM9DUzJYD1wE7A7j76DyGJiIiSeQ1abh7z0qUPSeLoYiISAz5nqchIiI1iJKGiIjEpqQhIiKxKWmIiNQFmzfD7bfD669X6zRKGiIitd1bb0HHjnD55fDkk9U6lZKGiEhttWoV9OsHRx8Na9aEhHHHHdU6pZKGiEhtU1oKDzwA7drBgw+GGsb8+XDqqZBmSaY4CnpGuIiIVNKcOXD++fDGG3DUUXDPPXDwwRk7vWoaIiK1wfr1cMUVcNhhMG8ejBkTOr0zmDBANQ0RkZpv4kS48EJYtgz69oVbb4WmTbNyKdU0RERqqiVL4JRToEcP2G23ULO4776sJQxQ0hARqXk2bYJbboEOHeCll+C22+D99+GYY7J+aTVPiYjUJK++ChdcEPotevSAO++Eli1zdnnVNEREaoIvv4Q+faBz59DpPWkSPPVUThMGKGmIiBS20lIoLob27eHhh+Gqq2DuXDj55LyEo+YpEZFC9eGHMGAAvPMOHHtsmHPRoUNeQ1JNQ0Sk0KxbB5ddFtaLWrQIxo6FV17Je8KAPCcNM7vfzL40szkp3u9lZrOix1tmdkiuYxQRyRl3mDAB9t8fhg+Hc8+FhQuhd+9qL/+RKfmuaTwIdE3z/j+B49z9YOBGoDgXQYmI5NzixXDiiXDGGWGexdtvw1//Ck2a5Duy7eQ1abj7a8DqNO+/5e5ropfvAC1yEpiISK5s3Ag33QQHHhgm591xB5SUQKdO+Y4sqZrUEX4uMCXZG2bWH+gP0DLHw89ERKrs5ZfDnIuFC+H000OTVIvC/t04381TsZjZzwlJ48pk77t7sbsXuXtRs2bNchuciEhlff459OoFXbqEHfWmTIHHHy/4hAE1IGmY2cHAGKC7u6/KdzwiIlW2dSuMHBnmXEyYAIMHh6XMu6br2i0sBd08ZWYtgSeB/3b3j/Idj4hIlc2YEeZclJSEGsbIkWGTpBomr0nDzB4BOgNNzWw5cB2wM4C7jwauBfYARlkYbrbF3YvyE62ISBWsXQvXXAOjRkGzZjBuHPTsWTBDaCsrr0nD3XtW8H4/oF+OwhERyRx3eOwxuPRS+OKL0OF9002w++75jqxaCrp5SkSkRvr445AkXnwxzOp++mkoqh2NJAXfES4iUmN8+y1cf32Yc/HuuzBiBEyfXmsSBqimISKSGS+8AL//fVgrqmdPuP122GuvfEeVcappiIhUx4oVcOaZcMIJUK8eTJ0aljCvhQkDlDRERKpmyxa4664w52LiRBgyBGbNguOPz3dkWaXmKRGRynr33TDn4oMPwsS8ESNgn33yHVVOqKYhIhLXmjVw/vlhMcEvvoDx42Hy5DqTMEBJQ0SkYu7w0EOhKaq4GC6+GObPD8uY19BJelWl5ikRkXQWLAhzLqZNgyOOgOeeg8MOy3dUeaOahohIMhs2wKBBcPDBoe9i9Gh46606nTBANQ0RkR09+ywMHAhLloStVocNgz33zHdUBUE1DRGRMsuWwWmnwUknQaNGoUlq7FgljARKGiIimzeHGdz77x82RBo6FGbOhM6d8x1ZwVHzlIjUbW+9FYbRzpoVahh33QVt2uQ7qoKlmoaI1E2rVsF558HRR8Pq1fDUUzBpkhJGBZQ0RKRuKS2FBx4Icy4eeAAuvzzMuejRo87NuaiKvCYNM7vfzL40szkp3jczu8vMFpnZLDP7aa5jFJFaZM4cOO446NsX9tsvDKUdNgx23TXfkdUY+a5pPAik21H910Db6NEfuCcHMYlIbbN+PVxxRZhjMX8+3HcfvP46HHRQviOrcfKaNNz9NWB1miLdgb958A6wu5nVzvWGRSQ7Jk4Mo6KGDYM+fcIM7759wzLmBWTcOGjdOoTVunV4XYjnL6y7tqPmwLKE18ujYyIi6S1ZAqecEvoqdtsN3ngDxoyBpk1jn6KyX7RV/WIeNw7694elS8MyV0uXhteZShwZPb+75/UBtAbmpHjvWeCYhNcvAR2TlOsPlAAlLVu2dBGpwzZudL/lFvdGjdwbN3YfNsx906ZKn+ahh8LHw9dseDRuHI5nonyiVq22/1zZo1WrSodd5fMDJR7jO9tC2fwxs9bAM+5+YJL3/gq84u6PRK8XAp3d/bNU5ysqKvKSkpIsRSsiBe2118Kci3nz4NRT4c47Ye+9q3Sq1q3Db+TltWoVKjHVLZ+oXr3wNV6eWRjsVV1xzm9mM9y9ws3MC715ahLQOxpF1QlYmy5hiEgdtXIlnHNOGBm1YQM8/TQ8+WTahFFRU9Knnyb/XKaOJ2rZsnLHKyuT58/3kNtHgLeBdma23MzONbMBZjYgKjIZ+ARYBNwLXJCnUEWkEJWWwr33Qrt2YV/uq6+GuXPDzO404rTxV/aLtjpfzDffDI0bb3+sceNwPBMyev44bVg16dGxY8cqtfmJSA0zc6b7kUeGxvnjjnOfOzf2R+O08eeyT6Ps861auZuFn3E/F1dF5ydmn0bev+Qz/VDSEKnlvv7a/dJL3evXd2/WzH3sWPfS0kqdwix50jDbvlxlv8iz/cWfTXGTRt47wjNNHeEitZQ7PPEEXHIJrFgR2pOGDoUmTSp9qup0WtdWtaUjXEQEFi+Gbt3CntxNm4aVaUePrlLCgOz3IdRmShoiUrg2boSbboIDDwyT8+64A0pKoFOnap22Vy8oLg41C7Pws7g4HJf0tJ+GiBSml1+GCy6AhQvh9NNh+HBo0SJjp+/VS0miKlTTEJHC8vnn4du8S5ewo96UKfD44xlNGFJ1ShoiUhi2boVRo8I+FxMmwODBYSnzrskXwk43OS/bi//VZWqeEpH8mzEjLP/x3nuhhjFqFOy3H+PGwaBBYVZ1y5aho7pXr+8m523YED5eNjmvTKr31BxVfRpyKyL5s3ZtqFGMHAnNmoWO7p49wWyHxABhhFNxcUgkqYbMgobTVkXcIbdKGiKSe+7w2GNw6aXwxRehw/umm2D33bcVSTeX4tNPUy/AV3b6ZO9lYvG/2ipj8zTMbB8z2yV63tnMLjKz3Sv6nIhIUh99BL/6VahRNG8O774LI0ZslzAg/QKA6dZ5yvbif3VdnI7wJ4CtZrYvcB/QBng4q1GJSO3z7bdw3XVhi9V334W774bp06Eo+S+36b78003O08S97IqTNErdfQtwKvAXd78U0JarIhLfCy+EZDFkCJx2WthydeBAqF8fSD7aKd2Xf7rJeZq4l10V9mmY2XTgL8Ag4GR3/6eZzfEkmyYVAvVpiBSQFStCv8X48dC2LYwaxbgvjt9uRFS3bjB2bPIOb0g+ekoyL2Md4WbWARgAvO3uj5hZG+BMd78lM6FmlpKGSAHYsiWMiBo8GDZtgv/9X7jiCsY90XCHEVFmyTuuNdopt+ImjQrnabj7PDO7EmgZvf4nUJAJQ0QKwPTpYc7FBx/wasMT6LdxBJvv35eb9wm1hsSEAckTBsTb8U5yL87oqZOBmcBz0etDzWxSJi5uZl3NbKGZLTKzq5K839LMppnZB2Y2y8y6ZeK6IpJZ48bBwXuvYbSdT2mnI/nXR1/w2wbj6fztFBax77YJdsmG0Kai0U6FKU5H+PXA4cC/ANx9JmEEVbWYWX1gJPBroAPQM2oKS3QNMN7dDwPOAkZV97oiUjnlO6kvuKDc6/OdaX3/ztTl7TmPYu7kYlqtn8+4TWcAtu08GzZs6/fegdn2rzXaqXDFSRpb3H1tuWOZmBF4OLDI3T9x903Ao0D3JNf5QfR8N2BFBq4rIikkSxDl99K+557vXjdaOp8zRv+CMZt680/a0JEZXMZwvt7233Z7W7cmHxE1YIBGO9UUcdaemmNmZwP1zawtcBHwVgau3RxYlvB6OXBEuTLXAy+Y2YXA94DjM3BdEUki2XpOo0cn73NoxAYGcTN/ZBjr+R7/w2ju5Ty8gt9DW7UKNQiNiKq54tQ0LgQOADYCjwBfA5dk4NqW5Fj5f549gQfdvQXQDfi7me0Qs5n1N7MSMytZuXJlBkITqXvidlJ341nmcgCDGMqjnEU7FlLM/+yQMFI1OfXqFUZFlZaGn0oYNUuFScPdN7j7IHf/mbsXRc+/zcC1lwN7J7xuwY7NT+cC46M43gYaAk2TxFgcxVbUrFmzDIQmUvdUNFqpBcuYwGk8y0l8QyM6M40+/I2V7Jk0QajJqXZK2TxlZk+Tpu/C3U+p5rXfA9pG8z7+j9DRfXa5Mp8CXYAHzWx/QtJQVUIkC1q2TD66aWc2cyF3cQPXUY9SrmYot/MHNtMACAmiTx+YPFlNTnVBuj6NP2fzwu6+xcwGAs8D9YH73X2umQ0BStx9EvAH4F4zu5SQwM7x2rYsr0iBuPnmHZci//kub/H37w2g+erZPMOJ3PLjuzm4ext+rARRZ2lpdBHZpmzTo38vXcWIXa/krH/fF7ZZvftu6N59x44KqTWqPSPczMa7+2/MbDZJmqnc/eBqxigiBaZXz1J6bRoLf/wj/OtfcPnlYWXaXXfNd2hSINI1T10c/TwpF4GISJ7NmROW/3jjDTjyyDDe9mD9bijbSzl6yt0/i55e4O5LEx/ABbkJT0Syadw42L/leobZFWw+6DA2zpwHY8aExKGEIUnEmafxyyTHfp3pQEQku5LN9p7YdyLPL9ufPzKMv9GbtlsXMq7huaGQSBIp/2WY2flRf0a7aLHAssc/gVm5C1FEqqtstnfZ8h8sXULXe05h/KYerGU3juF1+nEfy75pyqBB+Y5WClm6Po2HgSnAn4DEFWjXufvqrEYlIhlVNtt7ZzZxGXdwLUNwjD9yG3/hEraw87ayWpJc0knXp7HW3Ze4e0/C7O3NhFFUu5qZFi0WKXCJzVFLl8J/8hofcBi3cDXPcwL7M58/88ftEgZoSXJJr8IFC6MJeNcDXwCl0WEH1EsmUqASFx9sykqG8UfOYSxLaMXJTOIZTgZ23DVPS5JLReL0dl0CtHP3A9z9oOihhCFSwAYNgm82lNKPe1lIO3oxjqFcTQfmbUsYWh9KqiLO0ujLgPL7aYhIgSmbzf3pp3CQf8gbnM9RvM2rHMv53MN8wh5nZlr+Q6ouTtL4BHjFzJ4lLI8OgLvfkbWoRKRSypqj6m1Yx5+5jou4i9U0oTdj+Tv/TdlOBK1aheXIRaoqTtL4NHo0iB4iUmAG/a/z6w1P8Bcu4cesoJj+/C9DWUOTbWXUXyGZUGHScPcbchGIiFTR4sXc8+lAfs1zzOQQTmcC0+m07W01R0kmxRk91Qy4grB7X8Oy4+7+iyzGJSIV2bgRhg2Dm2/mP20nLvHhjGAgWxP+W6s5SjItzuipccACoA1wA7CEsIGSiOTLyy/DIYfA4MFw8sm8cOcC7m18yXYJQ81Rkg1xksYe7n4fsNndX3X3vpBQ9xWR3Pn8c/jtb6FLF9i8GaZMgfHj+a8Lm1NcrOGzkn1xOsI3Rz8/M7MTCft4t8heSCKyg61bw1LlZeuBDB4MV18NjRptK9Krl5KEZF+cmsZNZrYbYevVy4ExwKWZuLiZdTWzhWa2yMyuSlHmN2Y2z8zmmtnDmbiuSI0yYwZ06gQDB0LHjjB7NgwZsl3CEMmVOKOnnomergV+nqkLm1l9YCRh6fXlwHtmNsnd5yWUaQtcDRzt7mvMbM9MXV+k4K1dC9dcA6NGQbNmYTJGz57aclXyqsKahpk9YGb3l39k4NqHA4vc/RN33wQ8CnQvV+Y8YKS7rwFw9y8zcF2RwuYOjz4K7dvDyJFhN70FC+Dss7dLGOX3xxg3Lm8RSx0Sp0/jmYTnDYFTCf0a1dWcsERJmeXAEeXK7AdgZm8C9YHr3f258icys/5Af4CWWqJTarKPP4bf/x6mTg1NUU8/DUVFOxRLXJAQwiq2/fuH5+rXkGyqsKbh7k8kPMYBvwEOzMC1k9WxvdzrnYC2QGegJzDGzHZPEmOxuxe5e1GzZs0yEJpIjn37LVx3HRx4IEyfDiNGhJ9JEgZ81x+eaMMGtIGSZF1V9nRsC2Ti1/nlwN4Jr1uwYw1mOTDR3Te7+z+BhdH1RWqPF16Agw4KndunnQYLF4baRv362xUrvz9GMtpASbItTp/GOjP7uuwn8DRwZQau/R7Q1szamFkD4CxgUrky/yDqfDezpoTmqk8ycG2R/FuxAs48E044IfRVTJ0KDz8MP/rRDkV32K41BbXOSrbFGT31/Wxc2N23RBs8PU/or7jf3eea2RCgxN0nRe/9yszmAVuBP7r7qmzEI5IzW7aEDu7Bg2HTJrjhBrjiCmjYMOVHkjVHlacZ4JIL5ml+bTGzRkAviBbihxJgQjTaqSAVFRV5SUlJvsMQSW769DAa6oMPQg1jxAjYd98KP1avXuoahhYklEwwsxnunrwTLUHK5ikzOwiYD/wnYb2ppcAJwJtmtruZ3ZShWEVqvzVrQrI48siwFMhjj4UlQNIkjMQ+jHop/qe2agWlpWFRQiUMyYV0zVN3Aee5+9TEg2Z2PDAHmJvNwERqBXd46CG4/HL46iu46KLQ4f2DH+xQNHHnvSZNYN260HoFYRWR8tQcJfmQLmnsVT5hALj7i2a2mTBfQ0RSmT8fLrgAXnkFDj8cnnsODjssadHy8y5Wpei5q18/1CzUHCX5ki5p1DOzXdx9Y+JBM2tIWPG2gm45kTpqw4bwjT5sGHzve2GhwfPOS93GRLyObggJo7Q0g7GKVFK6Ibd/A54ws9ZlB6Ln44G/ZzMokRrr2WfhgANg6NCwTtTChfA//5M2YUD8+RUaUiv5lvJfsrvfBDwHvGZmX5nZV8CrwFR3vzFXAYrUCMuWwX/9F5x0Ulh9dto0GDsW9ky/xmZZZ3e6uRdl1IchhSDtPA13HwGMMLPvR6/X5SQqkZpi82a48064/vrQbjR0KPzhD9CgQYUfLd+PUd7OO4f+8tWr1YchhSPOgoVKFiLJvPlmGEY7ezaceCLcfTe0aZP2I4kjpOrVSz4qCsJQWiUJKUSxkoaIJFi1Cq68Eu67D1q0gKeegu7dK9znonzNIlXCMAvzLkQKUVUWLBSpm0pL4f77oV07ePDB0Aw1fz706BFrY6S4I6TU2S2FLM6ChY3NbLCZ3Ru9bmtmJ2U/NJECMns2HHssnHtuSBrvvw9//jPsumvsU8QZIaXObil0cWoaDwAbgSOj18sBLSEidcP69WExwZ/+NNQqxoyB11+Hgw+u9KlS1SDq1w8VlVatoLhY/RhS2OIkjX3c/TZgM4C7f0PyDZREapeJE6FDhzBJr3fvMOfi3HMrnHORKHH9qH//e8dBVY0bh5G5Wj9Kaoo4//o3RavdOoCZ7UOoeYjUTkuXho7tHj3CmNfXXw+d3k2bVuo05ffAWLUq/NxjD9UspOaKM3rqOsIkv73NbBxwNHBONoMSyYtNm2D48LC/hRncdhtcckmYMBFTRUNqN28O3SBffZXh2EVyJM4mTFPN7H2gE6FZ6mJ31z95qV1efTUsLjhvXqhh3HlnrGFMlV2ZFrQlq9Rs6fbT+GnZA2gFfEbYw7tldKzazKyrmS00s0VmdlWacqebmZtZhRuEiFTKypVwzjnQuXPo9H766TDvIkXCSOyjaNoU+vbdvvlpU4ztyTSkVmqydDWN29O858AvqnNhM6sPjAR+SRiR9Z6ZTXL3eeXKfR+4CJheneuJbKe0NIyEuuqqUD246qqw/Wrjxik/Enf58nQ0pFZqupRJw91/nuVrHw4scvdPAMzsUaA7MK9cuRuB24DLsxyP1BUffhiW/3j7bTjuOBg1KoySSiLush/paA8MqU3iTO5raGaXmdmTZvaEmV0S7alRXc2BZQmvl0fHEq99GLC3uz+TgetJXbduHVx2GXTsCB9/HMa6Tpu2XcJI1/xUlYShIbVS28QZPfU3YB1wd/S6J2E/jTOqee1kcz22LRBtZvWA4cQYqWVm/YH+AC3VYCzlucMTT4SRUCtWhDamoUNDz3WCTDQ/aWVaqe3iJI127n5IwutpZvZhBq69HNg74XULQkd7me8DBwKvWFjX50fAJDM7xd1LEk/k7sVAMUBRUVGMnQmkzvjkExg4EKZMgUMOgQkToFOnpEXjrg2VSElC6po4k/s+MLNt/8vM7AjgzQxc+z2grZm1MbMGwFnApLI33X2tuzd199bu3hp4B9ghYYgktXEj3HRT2EXv9dfhjjugpCRlwoD4Q2ETl/144IEw50LNT1JXxEkaRwBvmdkSM1sCvA0cZ2azzWxWVS/s7luAgcDzwHxgvLvPNbMhZnZKVc8rwssvh1rF4MFhJ70FC+DSS2Gnnbbrs2jdOkzNKHsdZ3UQ9VFIXWdewT6TZtYq3fvuvjSjEVVTUVGRl5SoMlInff55WK784YfhJz+BkSMZt6prysl3caj5SeoKM5vh7hXOhYszI3ypmf2Q0P+wU8Lx96sXokiGbN0Ko0fDoEFsXf8NI3YbzNWfXE3j3zbaLknE7djWEFmR1CpMGmZ2I2EE02K+G91U7cl9Ipkw+ab3+fGNAzh003u8ttMv+L2NYs7adgB8U4XRTxASRmlpBoMUqUXijJ76DWF59EpU6kWybO1aFvxmMCe8MJKVNONsxvHIlp5kYtV+jdoWSS1OR/gcYPdsByISizs8+ii0b89+L4zgHs6nPQt4hLPJRMLQMh8i6cWpafyJMOx2Dgn7aLi7RjhJbn38cRju9OKL0LEjR3z+NCVUbg3L8h3b3brB5Mmho1x9GCIVi5M0xgK3ArMBtfRK7n37LfzpT2wdegvrtzZkEHfz7Mrz+XqP+lBBv4VGP4lkVpyk8ZW735X1SEQSlC0U2G7pC4ze6fe02bKIJ+ufxUV+B5+zF3waEkKDBtsPoVWSEMmuOEljhpn9iTBbO7F5SkNuJSvGjYNr+63g1m8v5UzG89GWtvySqby49fjtym3eHLZO3XVXNS+J5EqcpHFY9DNx/QUNuZXs2LKFRReO5INvB9OATVzLDdzKlWxil6TFV6/W1qkiuRRncl+299UQCd59FwYM4Lo1HzCFrgxkBJ+wT9qPaHisSG7FqWlgZicCBwDb9tFw9yHZCkrqmDVr+OiMQez70mg+Yy8uqzee8aWnU34IrVkYcVtGw2NFci/OJkyjgTOBCwn/i88g7BkuUj3u8NBDfNO6Pfu89Ffu5GL2Zz7jS8+gfMJo3BgGDAgry5atMFtcrP4LkVyLU9M4yt0PNrNZ7n6Dmd0OPJntwKSWW7AgzLmYNo0FDY7gdzzPhxy6XRGtASVSeOIkjW+inxvM7MeEkfFtsheS1GaP3r+Bry69mf5fD+Obet9jQd+/ctT9/ShNUunVGlAihSfOMiLPmNnuwDDgfWAJ8Eg2g5KapfweFePGJT8+6sRn6dTvAAZ+PZRH6Enb0oX84tH+/HCP5P8M1cktUnjijJ66MXr6hJk9AzR097XZDUtqivL7ai9dGl6/+WbYrGjDBmjBMm5fegmnLX2SeexPZ6bxKp3DBzZAo0ahzyJxq1V1cosUppQ1DTP7mZn9KOF1b2A8cKOZNclFcFJYktUoku2rvWFD6KTetGEzl3E789mfXzOFqxnKocz8LmFEVq8O5dXJLVL4Uu7cZ2bvA8e7+2ozOxZ4lDCC6lBgf3c/vdoXN+sK3AnUB8a4+y3l3r8M6AdsAVYCfSvaKVA791VfWTJInGUN29coYMfaQaIjeYt7OJ9DmMUznMiF3M2SFF1hrVqFrVNFJH8ysXNffXdfHT0/Eyh29ycIzVQzMxBgfWAk8EtgOfCemU1y93kJxT4Aitx9g5mdD9wWxSJZkqq5qVGj5DWK+vXDxnllmrCKW7iK8xjDMlpwKk/yD3pQNoRWcy1EarZ0HeH1zawsqXQBXk54L9akwAocDixy90+iDZ4eBbonFnD3ae5e9lX1DtAiA9eVNFI1N6XaKnXr1vDFD04fHmQB7fkdD/DiIX+gY6P5/INTKUsYmmshUvOlSxqPAK+a2UTCsNvXAcxsXyATHeHNgWUJr5dHx1I5F5iS7A0z629mJWZWsnLlygyEVrulGu0EoUmqMlq1gscGz2H6LsfyIL9j6S778fyfPuD4mX9m+L277pAgRo0KTVGlpeGnEoZIzZKyxuDuN5vZS8BewAv+XedHPULfRnUl22YtaQeLmf0WKAKOSxFrMVAMoU8jA7HVWqmanyB8gbdsGY6Vt8ce8M0329dCmjZaz7MHDeGAwXeE9chHjqHod78L2Sg6n5KCSO2Sdp6Gu7/j7k+5+/qEYx9laFn05cDeCa9bACvKFzKz44FBwCnuvrH8+1I5qZqfBg0Kz2++uay56TuNG8Odd24/wqlfs4ksadyBA565DXr3hoUL4dxztyUMEamdMtE3UVXvAW3NrA3wf8BZwNmJBczsMOCvQFd3/zL3IdY+qZqfyo6X1QzKj54qO97rmKVw4YXw9NNw4IHwj9fhmGOyH7iIFIS8JQ1332JmA4HnCUNu73f3uWY2BChx90mEWei7Ao+bGcCn2pu8elI1PyXOvk7arLRpE9xxBwwZEqr682QvAAARCElEQVQat90Gl1wStsoTkTojnzUN3H0yMLncsWsTnh+/w4ekWm6+Ofl8i7TDXl99NSwuOG8e9OgR2qq0xodInaQG6DqmV69KzL7+8kvo0wc6d4b160OT1FNPKWGI1GF5rWlIflQ4qqm0FMaMgauugnXr4Oqr4ZprduwhF5E6R0lDtvfhh3D++fD223DccWFiRYcO+Y5KRAqEmqckWLcOLrsMOnaERYvCErXTpilhiMh2lDRqoXQzvnfgDhMmwP77w1/+Av36hV31evcOnR4iIgmUNGqQOMmgbMb30qUhH5TN+E6aOBYvhm7d4IwzoFkzeOstGD0ammjlexFJTkkjz+LWCuImg4pmfAOwcSPcdFOYnPfGGzB8OLz3HnTqlME/mYjURin306ipatJ+GuXXgYIwQCnZENjWrZNPyiu/F0W9etsvPV7GLNpv++WXw5yLhQtDDWP4cGiebp1IEakL4u6noZpGHsWqFUQqWv6jTKopFB2bfx4yUZcusGULTJkC48crYYhIpShp5FHcRACpk0H54+UXHKzHVi7ZeSRvrm4fOryvvRZmz4auXasWtIjUaUoaeRQ3EUDq1WfLL/+ROOO7IzN4v0Enhm8eSIMji0KyuOGGsA2fiEgVKGnkUdxEAJVb/qPXSWtZcvKFlNQ7nEOaLIeHH4apU2G//bLzBxGROkMzwvOoomXIk5VPu/yHOzz2GFx6KXzxBfz+92GU1G67ZTx2EamblDTyLGO72338cRgV9eKLYVb3009DUYUDIUREKqVONE9VaoZ0AZ07lm+/heuuC3Mu3n0XRoyA6dOVMEQkK2p9TaOiPbEL9dyxvPBCaIJatAh69oTbb4e99srBhUWkrsprTcPMuprZQjNbZGZXJXl/FzN7LHp/upm1ruw1KjMXopDOndaKFXDmmXDCCaGKM3Vq6OxWwhCRLMtb0jCz+sBI4NdAB6CnmZVfUvVcYI277wsMB26t7HUqMxeikM6d1JYtYde89u1h4sSw9eqsWXC8NjgUkdzIZ03jcGCRu3/i7puAR4Hu5cp0B8ZGzycAXcwqt/RqZeZCVFY2z72D6dPh8MPDvtxHHw1z58LgwbDLLlm4mIhIcvlMGs2BZQmvl0fHkpZx9y3AWmCPylykMnMhKiub595mzZqwKdKRR4ZhtOPHw+TJsM8+GbyIiEg8+UwayWoM5Zfai1MGM+tvZiVmVrJy5crt3qvUntiVlM1z4w4PPRSaooqL4eKLYf78sMig9rkQkTzJ2yq3ZnYkcL27nxC9vhrA3f+UUOb5qMzbZrYT8DnQzNMEXZNWuU1p/vww5+KVV+CII8IeF4cemu+oRKQWqwmr3L4HtDWzNmbWADgLmFSuzCSgT/T8dODldAmjxisbenXIITBzJvz1r2FjJCUMESkQeZun4e5bzGwg8DxQH7jf3eea2RCgxN0nAfcBfzezRcBqQmKpnZ59FgYODJtj9O4Nw4bBnnvmOyoRke3kdXKfu08GJpc7dm3C82+BM3IdV04tWxZGRD35ZNine9o06Nw531GJiCRVJ5YRKUibN4cZ3PvvHzZEGjo0NEkpYYhIAav1y4gUpLfeggEDwv4WJ50Ed90FbdrkOyoRkQqpppFLq1ZBv35hct6aNfDUUzBpkhKGiNQYShq5UFoKDzwA7drBgw/C5ZeHYbU9emjOhYjUKGqeyrY5c8KM7jfeCDWMe+6Bgw7Kd1QiIlWimka2rF8PV1wBhx0G8+bBfffBa68pYYhIjaaaRjZMnAgXXhiG0/btC7feCk2b5jsqEZFqU00jk5YsgVNOCX0Vu+0Gr78eahhKGCJSSyhpZMKmTXDLLdChA7z0Etx2G7z/PhxzTL4jExHJKDVPVderr4bFBefNCzWMO+/M0oYaIiL5p5pGVX35JfTpE2Zwr18f5ls89ZQShojUakoalVVaGva3aN8+7Mt99dWhlnHyyfmOTEQk69Q8VRkzZ4Y5F++8A8cdB6NGhX4MEZE6QjWNONatg0svhY4dYfFiGDs2rEarhCEidYxqGum4wxNPhK1WP/sM+vcPq9E2aZLvyERE8kI1jVQWL4Zu3cKe3M2ahZVpR49WwhCROi0vScPMmpjZVDP7OPr5wyRlDjWzt81srpnNMrMzcxLcxo1w441w4IFhvajhw6GkBDp1ysnlRUQKWb5qGlcBL7l7W+Cl6HV5G4De7n4A0BX4i5ntntWoXn4ZDj4Yrr027HOxYEHYVW8nteKJiED+kkZ3YGz0fCzQo3wBd//I3T+Onq8AvgSaZSWazz+HXr2gSxfYsiXspPf449C8eVYuJyJSU+UrafyHu38GEP3cM11hMzscaAAszmgUW7fCyJFhzsWECTB4cFjKvGvXjF5GRKS2yFq7i5m9CPwoyVuDKnmevYC/A33cvTRFmf5Af4CWcWdkz5gRtlwtKQk1jJEjwyZJIiKSUtaShrsfn+o9M/vCzPZy98+ipPBlinI/AJ4FrnH3d9JcqxgoBigqKvK0ga1dC9dcEybmNWsG48ZBz57aQU9EJIZ8NU9NAvpEz/sAE8sXMLMGwFPA39z98Wpf0R0eeSQ0RY0cGWZ2L1gAZ5+thCEiElO+ksYtwC/N7GPgl9FrzKzIzMZEZX4DHAucY2Yzo8ehVbrapk1wwgkhQTRvDu++CyNGwO7ZHYwlIlLb5GUsqbuvArokOV4C9IuePwQ8lJELNmgA++0H3buHfoz69TNyWhGRuqbuTEAYMSLfEYiI1HhaRkRERGJT0hARkdiUNEREJDYlDRERiU1JQ0REYlPSEBGR2JQ0REQkNiUNERGJzdzTr+9X05jZSmBpJT7SFPgqS+FUl2KrGsVWNYqtampLbK3cvcI9i2pd0qgsMytx96J8x5GMYqsaxVY1iq1q6lpsap4SEZHYlDRERCQ2JY1o86YCpdiqRrFVjWKrmjoVW53v0xARkfhU0xARkdjqXNIws2FmtsDMZpnZU2aWdPs+M+tqZgvNbJGZXZWj2M4ws7lmVmpmKUc8mNkSM5sd7WZYUmCx5eO+NTGzqWb2cfTzhynKbU3YBXJSlmNKex/MbBczeyx6f7qZtc5mPJWM7RwzW5lwr/rlKK77zexLM5uT4n0zs7uiuGeZ2U9zEVfM2Dqb2dqEe3ZtDmPb28ymmdn86P/oxUnKZO7euXudegC/AnaKnt8K3JqkTH1gMfAToAHwIdAhB7HtD7QDXgGK0pRbAjTN8X2rMLY83rfbgKui51cl+zuN3vt3ju5VhfcBuAAYHT0/C3isgGI7BxiRy39f0XWPBX4KzEnxfjdgCmBAJ2B6AcXWGXgm1/csuvZewE+j598HPkryd5qxe1fnahru/oK7b4levgO0SFLscGCRu3/i7puAR4HuOYhtvrsvzPZ1qiJmbHm5b9E1xkbPxwI9cnDNdOLch8SYJwBdzMwKJLa8cPfXgNVpinQH/ubBO8DuZrZXgcSWN+7+mbu/Hz1fB8wHmpcrlrF7V+eSRjl9Cdm3vObAsoTXy9nxLyGfHHjBzGaYWf98B5MgX/ftP9z9Mwj/gYA9U5RraGYlZvaOmWUzscS5D9vKRL/ErAX2yGJMlYkN4LSoGWOCme2dg7jiKPT/l0ea2YdmNsXMDshHAFEz52HA9HJvZeze1co9ws3sReBHSd4a5O4TozKDgC3AuGSnSHIsI8PM4sQWw9HuvsLM9gSmmtmC6DehfMeWl/tWidO0jO7bT4CXzWy2uy/ORHzlxLkPWbtXFYhz3aeBR9x9o5kNINSIfpH1yCqWr3sWx/uEZTj+bWbdgH8AbXMZgJntCjwBXOLuX5d/O8lHqnTvamXScPfj071vZn2Ak4AuHjX4lbMcSPztqgWwIhexxTzHiujnl2b2FKHJodpJIwOx5eW+mdkXZraXu38WVbm/THGOsvv2iZm9QviNLBtJI859KCuz3Mx2AnYjN80fFcbm7qsSXt5L6PsrBFn791VdiV/S7j7ZzEaZWVN3z8maVGa2MyFhjHP3J5MUydi9q3PNU2bWFbgSOMXdN6Qo9h7Q1szamFkDQkdlVkfbxGVm3zOz75c9J3TsJx3RkQf5um+TgD7R8z7ADrUiM/uhme0SPW8KHA3My1I8ce5DYsynAy+n+AUm57GVa+s+hdBGXggmAb2jkUCdgLVlzZL5ZmY/KuuTMrPDCd+tq9J/KmPXNuA+YL6735GiWObuXT56+/P5ABYR2vZmRo+yESw/BiYnlOtGGIWwmNA8k4vYTiX8RrAR+AJ4vnxshFEvH0aPuYUUWx7v2x7AS8DH0c8m0fEiYEz0/ChgdnTfZgPnZjmmHe4DMITwywpAQ+Dx6N/ju8BPcnGvYsb2p+jf1ofANKB9juJ6BPgM2Bz9WzsXGAAMiN43YGQU92zSjDDMQ2wDE+7ZO8BROYztGEJT06yE77Vu2bp3mhEuIiKx1bnmKRERqTolDRERiU1JQ0REYlPSEBGR2JQ0REQkNiUNKUhmtkfCiqGfm9n/Rc//ZWbZml+RKpZDo1m+Za9PSbY6bMxzLYnmiZQ/vpuZ/c3MFkePcZZitd7qSPdnMbPrzezyTF9TahclDSlI7r7K3Q9190OB0cDw6PmhQGmmrxfNyk7lUMK497LYJrn7LRkO4T7gE3ffx933IczfeDDD14Dc/FmkFlPSkJqovpndG+0d8IKZNQIws33M7LloIcfXzax9dLyVmb0ULcD3kpm1jI4/aGZ3mNk04NZotv39ZvaemX1gZt2jWdNDgDOjms6ZFvabGBGd4z8s7MvyYfQ4Kjr+jyiOuVbBopJmti/QEbgx4fAQ4BAza2dhr4ZnEsqPMLNzoufXRvHOMbPihFnJr5jZrWb2rpl9ZGb/WdGfpVxMqe7lGdG1PjSzai9dIzWPkobURG2Bke5+APAv4LToeDFwobt3BC4HRkXHRxCWhT6YsEDlXQnn2g843t3/QFj88GV3/xnwc2AYsDNwLWG/i0Pd/bFysdwFvOruhxD2W5gbHe8bxVEEXGRm6Vaw7QDMdPetZQei5x8Q9jFJZ4S7/8zdDwQaEdZUK7OTux8OXAJc52Ep9HR/lkSp7uW1wAnRn/eUCmKTWqhWLlgotd4/3X1m9HwG0NrCCp9HAY/bd9tS7BL9PBL4r+j53wmbNpV5POHL+lfAKQnt+g2BlhXE8gugN2z7ol8bHb/IzE6Nnu9NSHSp1iIykq84Gmd/jZ+b2RVAY6AJIWk9Hb1XtnDdDKB1jHOFi6a/l28CD5rZ+ITzSx2ipCE10caE51sJv2HXA/4V9XtUJPELen3CcwNO83KbTZnZEZUJzsw6A8cDR7r7Bgsr6jZM85G5wGFmVs/dS6Nz1AMOJiy53ZLtWwUaRmUaEmoARe6+zMyuL3edsvu0lcr9X095L919QHQ/TgRmmtmhvv2quFLLqXlKagUPS1P/08zOgG17Ih8Svf0WYTVXgF7AGylO8zxwYUK/wGHR8XWEbTSTeQk4Pypf38x+QFjmfE2UMNoTttdMF/siQlPUNQmHrwFecvdPgaVABwv7iu8GdInKlCWIr6LawenprhPjz1IWT8p7aWb7uPt0d78W+Irtl9uWOkBJQ2qTXsC5Zla2AnDZNqYXAb8zs1nAfwMXp/j8jYQ+jFlmNofvOqanEb60Z5rZmeU+czGhiWg2oRnoAOA5YKfoejcSVj2tSF/CkuWLzGwlIdEMAHD3ZcB4wiqm4wgJBnf/F2G/i9mETX/ei3GddH+WRKnu5TAzmx3dn9cIq7pKHaJVbkUKjJm1AyYTOqIn5zsekURKGiIiEpuap0REJDYlDRERiU1JQ0REYlPSEBGR2JQ0REQkNiUNERGJTUlDRERi+3/MLyjyMlhg/AAAAABJRU5ErkJggg==\n",
"text/plain": [
"
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 8.87e+03. This might indicate that there are strong multicollinearity or other numerical problems."
],
"text/plain": [
"\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: sr R-squared: 0.156\n",
"Model: OLS Adj. R-squared: -0.032\n",
"Method: Least Squares F-statistic: 0.8302\n",
"Date: Tue, 25 Sep 2018 Prob (F-statistic): 0.523\n",
"Time: 15:53:02 Log-Likelihood: -64.176\n",
"No. Observations: 23 AIC: 138.4\n",
"Df Residuals: 18 BIC: 144.0\n",
"Df Model: 4 \n",
"Covariance Type: nonrobust \n",
"==============================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"Intercept -2.4340 21.155 -0.115 0.910 -46.879 42.011\n",
"pop15 0.2739 0.439 0.624 0.541 -0.649 1.197\n",
"pop75 -3.5485 3.033 -1.170 0.257 -9.921 2.824\n",
"dpi 0.0004 0.005 0.084 0.934 -0.010 0.011\n",
"ddpi 0.3955 0.290 1.363 0.190 -0.214 1.005\n",
"==============================================================================\n",
"Omnibus: 1.851 Durbin-Watson: 1.904\n",
"Prob(Omnibus): 0.396 Jarque-Bera (JB): 1.540\n",
"Skew: 0.497 Prob(JB): 0.463\n",
"Kurtosis: 2.213 Cond. No. 8.87e+03\n",
"==============================================================================\n",
"\n",
"Warnings:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
"[2] The condition number is large, 8.87e+03. This might indicate that there are\n",
"strong multicollinearity or other numerical problems.\n",
"\"\"\""
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"smf.ols(formula='sr ~ pop15 + pop75 + dpi + ddpi', data=savings[savings.pop15 > 35]).fit().summary()"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
OLS Regression Results
\n",
"
\n",
"
Dep. Variable:
sr
R-squared:
0.507
\n",
"
\n",
"
\n",
"
Model:
OLS
Adj. R-squared:
0.418
\n",
"
\n",
"
\n",
"
Method:
Least Squares
F-statistic:
5.663
\n",
"
\n",
"
\n",
"
Date:
Tue, 25 Sep 2018
Prob (F-statistic):
0.00273
\n",
"
\n",
"
\n",
"
Time:
15:53:02
Log-Likelihood:
-63.072
\n",
"
\n",
"
\n",
"
No. Observations:
27
AIC:
136.1
\n",
"
\n",
"
\n",
"
Df Residuals:
22
BIC:
142.6
\n",
"
\n",
"
\n",
"
Df Model:
4
\n",
"
\n",
"
\n",
"
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
t
P>|t|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
23.9618
8.084
2.964
0.007
7.197
40.726
\n",
"
\n",
"
\n",
"
pop15
-0.3859
0.195
-1.975
0.061
-0.791
0.019
\n",
"
\n",
"
\n",
"
pop75
-1.3277
0.926
-1.434
0.166
-3.248
0.593
\n",
"
\n",
"
\n",
"
dpi
-0.0005
0.001
-0.634
0.533
-0.002
0.001
\n",
"
\n",
"
\n",
"
ddpi
0.8844
0.295
2.994
0.007
0.272
1.497
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
Omnibus:
0.363
Durbin-Watson:
2.189
\n",
"
\n",
"
\n",
"
Prob(Omnibus):
0.834
Jarque-Bera (JB):
0.396
\n",
"
\n",
"
\n",
"
Skew:
-0.241
Prob(JB):
0.820
\n",
"
\n",
"
\n",
"
Kurtosis:
2.654
Cond. No.
3.01e+04
\n",
"
\n",
"
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 3.01e+04. This might indicate that there are strong multicollinearity or other numerical problems."
],
"text/plain": [
"\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: sr R-squared: 0.507\n",
"Model: OLS Adj. R-squared: 0.418\n",
"Method: Least Squares F-statistic: 5.663\n",
"Date: Tue, 25 Sep 2018 Prob (F-statistic): 0.00273\n",
"Time: 15:53:02 Log-Likelihood: -63.072\n",
"No. Observations: 27 AIC: 136.1\n",
"Df Residuals: 22 BIC: 142.6\n",
"Df Model: 4 \n",
"Covariance Type: nonrobust \n",
"==============================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"Intercept 23.9618 8.084 2.964 0.007 7.197 40.726\n",
"pop15 -0.3859 0.195 -1.975 0.061 -0.791 0.019\n",
"pop75 -1.3277 0.926 -1.434 0.166 -3.248 0.593\n",
"dpi -0.0005 0.001 -0.634 0.533 -0.002 0.001\n",
"ddpi 0.8844 0.295 2.994 0.007 0.272 1.497\n",
"==============================================================================\n",
"Omnibus: 0.363 Durbin-Watson: 2.189\n",
"Prob(Omnibus): 0.834 Jarque-Bera (JB): 0.396\n",
"Skew: -0.241 Prob(JB): 0.820\n",
"Kurtosis: 2.654 Cond. No. 3.01e+04\n",
"==============================================================================\n",
"\n",
"Warnings:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
"[2] The condition number is large, 3.01e+04. This might indicate that there are\n",
"strong multicollinearity or other numerical problems.\n",
"\"\"\""
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"smf.ols(formula='sr ~ pop15 + pop75 + dpi + ddpi', data=savings[savings.pop15 < 35]).fit().summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plot the young and old groups with different colors:"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0,0.5,'sr')"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEKCAYAAADn+anLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xmck+W5//HPPTszrAooKoobKupRdERQsCguiKi4b3VvwR78qa222trW2qq11cOptVTrdkSsSt2QF1YLKoobICIiioqiIIKACgKzwTD3748r44TMk2GGSZ4nmXzfr1dekzx5klzEmCv3dt3Oe4+IiEiQvKgDEBGRzKUkISIiSSlJiIhIUkoSIiKSlJKEiIgkpSQhIiJJKUmIiEhSShIiIpKUkoSIiCRVEHUAzdG1a1ffq1evqMMQEckqb7/99tfe+26teY6sSBK9evVi9uzZUYchIpJVnHOLW/sc6m4SEZGklCRERCQpJQkREUlKSUJERJJSkhBphk2bYOlSqKyMOhKRcClJiGzBgw9C9+7Quzdsuy2MGgUbNkQdlUg4smIKrEhUnnsORo/evAUxfry1LO67L7q4RMKiloRIE266qXEXU1UV/POfsG5dNDGJhElJQqQJi5MsRcrPh5Urw41FJApKEiJN6N8f8gL+LykogJ49w49HJGxKEiJN+P3vobQUnGs4VloKN98MRUXRxSUSFiUJkSb06QNvvgknnmgznPr2tYHr0aOjjkwkHJrdJLIF++0HzzwTdRQi0VBLQkREklKSEBGRpNKWJJxzPZ1z05xzC5xz7zvnrowd38Y5N9U5tzD2t0u6YhARkdZJZ0uiFrjae78P0B8Y7ZzrA1wHvOi93xN4MXZbREQyUNqShPd+ufd+Tuz6OmABsCNwMjAudto4YES6YhARkdYJZUzCOdcL6AvMBLbz3i8HSyRA9zBiEBGRlkt7knDOtQeeBK7y3q9tweNGOudmO+dmr1q1Kn0BiohIUmlNEs65QixB/NN7/1Ts8ArnXI/Y/T2AwAo43vt7vPfl3vvybt26pTNMERFJIp2zmxxwP7DAez8m7q5JwIWx6xcCWqYkIpKh0rni+nDgfOA959zc2LFfAbcC/3LOXQosAc5IYwwiItIKaUsS3vvXAJfk7iHpel0REUkdrbgWEZGklCRERCQpJQkREUlKSUJERJJSkhARkaSUJKR1vIcpU+Dcc+GMM2DiRKirizoqEUkR7UwnrfPTn8J990FFhd1+7jkYPhwefXTzjaFFJCupJSFb78MP4Z57GhIE2PXJk+G116KLS0RSRklCtt6UKdbdlKiiAp59Nvx4RCTllCRk63XsCPn5jY8XFUHnzuHHIyIppyQhW29Ekv2i8vNtIFtEsp6ShGy9zp1h0iTo1MlaFR07QmkpPPQQ7Lxz1NGJSApodpO0zlFHwYoVMG0a1NbCkUdCWVnUUYlIiihJSOsVF8PQoVFHISJpoO4mERFJSklCRESSUpIQEZGklCRERCQpJQkREUlKSUJERJJSkhARkaSUJHLMpk0wfz4sXhx1JCKSDZQkcsjkybD99jBgAOyzD5SXwxdfRB2ViGQyJYkc8eGHcNZZ8PXXsH49VFXB3LkwZEhwtW8REVCSyBl33QUbNmx+bNMmWL4c3nwzmphEJPMpSeSIxYut/l4i5yxRiIgEUZLIEccea1W8E23YAIceGn48IpIdlCRyxIUXwg47WMHWemVl8OMfw047RReXiGQ2lQrPEWVl8NZbMGYMPPGE7Q90xRVwzjlRRyYimcz5LJjaUl5e7mfPnh11GCIiWcU597b3vrw1z6HuJhERSUpJQkREklKSEBGRpJQkREQkKSUJkS3wXqVLJHcpSYgksXw5nHaarS0pKYEzzoAVK6KOSiRcWichEqCmBvr3h2XLGsqZTJwIc+ZYscTCwmjjEwmLWhIiASZOhG+/3bzeVW0trFplJddFcoWShEiABQuspHqiykq7TyRXpC1JOOcecM6tdM7Njzv2O+fcl865ubHLsHS9vkhr9OkDHTo0Pl5aaveJ5Ip0tiQeBIYGHP9f7/2Bscu/0/j6IlttxAjYdlsoiBu1KyyE7t1h+PDo4hIJW9qShPd+OvBtup5fJJ2KimDGDDj1VJvdVFwMp59uGzQVaLqH5JAoPu6XO+cuAGYDV3vvV0cQg8j3vLfNlxJttx1MmBB+PCKZJOyB67uA3YEDgeXA/yQ70Tk30jk32zk3e9WqVWHFJzlk/HjYeWfIy7M9NR58MOqIRDJPqEnCe7/Ce7/Je18H3Av0a+Lce7z35d778m7duoUXpOSEhx+Gyy6DL76w219+CaNHw7hx0cYlkmlCTRLOuR5xN08B5ic7VySdfv1rm84ar7ISfvObaOIRyVRpG5Nwzj0KDAa6OueWAjcAg51zBwIe+BwYla7Xz0V1dTBtGrz3HvTuDccdB/n5UUeVmepbEImWLk0+RiGSi9KWJLz3QRtj3p+u12tL6ovJteSLau1aGDwYFi6EjRttdk737vD66zYAK5vr1QsWLWp8vGdPJQiReFpxnUG+/RZ++ENo186+5E88EZYsad5jr7sOPvjAVgnX1MC6dbB4MYwcmd6Ys9Uf/2gL4+KVlsItt0QTj0im0h7XGaKuDvbfv6ElADbrpnt3+OQTKCtr+vGdO8N33zU+XlAAVVWa2x/kX/+CX/7SkunOO1uCOPvsqKMSSR3tcd2GvPCC9ZPXJwiwxLFuHTz22JYfX1cXfFx7ISR35pnw6adWuG/RIiUIkSBKEhniww9hw4bGxysqYN68LT/+5JMbtxby8uAHP1BZaxHZekoSGaJPHxuHSFRWBgccsOXH33477LgjtG/f8Lhtt4V7701tnCKSW9RTnSGOOgp22QU+/rihRZGfDx07Nq8bZLvtrDXyxBO2MU6fPva4+qQhIrI11JLIEHl5MH26fbHXz24aPhxmzWo8CyeZkhKbHTVmDPzoR0oQItJ6akmkWUvWPHTpYmUhVBpCRDKFWhJpUlEBo0bZ2EBBgQ0gf/BB1FGJiLSMkkSanHCCtQiqqmx66quvwmGHwYoV4caxapWtBTjoIFuc98or4b6+iGQ3JYk0mDcP3nrLVj7X895u3313eHGsWGEL9MaMgXfegcmTYdgwuF/FUUSkmZQk0uDDD4ML61VX25d1WG67DVav3nz9RWUl/PSnmycwEZFklCTSoE8f2LSp8fGSEihv1QL5lnnuueAFegALFjTxQO/hb3+znXiKi+GQQ+C119ISo4hkttxOEt99Z5sWJ6sbvZX22w8OO7SWkvyGb2hHHe2KNjEqxOLoyaq/btwIXbs28cDf/x6uvdZ24tmwAWbPtrrjb72VljhFJHPlZpLw3naX2X57OP5423xh2DAroZoikzYNZ6T/Bx34jkI2cAxTmVHXj2514Y1cX3NN4zUWhYVw6KHWSAhUXc2aP9/D/1SO4mQm8gv+xGf0sn6q3/423SGLSKbx3mf85eCDD/Yp9dBD3peW1te+s0txsfdnnpma53/33cbPD96XlHh/442peY04X37p/RVXeN+nj/fHHOP9lCkN991+u4XSsaP37dp5P3Cg96tWJX+uZW985rdnuW/Heg/eF1Lty1jnX+Vw73fcMeWxR2HRIu/nzPF+w4aoIxFJL2C2b+X3b262JG67rfHelTU18MwztntPazU1cj1nTuufP86yZVbb6a67bB3G1KkwYkTDLKqrr7ZZTs8/D/Pn21TcprqafvOPHfmabanCapNvpJgK2nMxD+D32julsYdt6VIbE9p3X1u30r27lQsXkeRyM0msWhV8PC8veFOGlmpq5Prgg1v//HFuvdVCji8xXlkJP/+55SSw8hwDBsBuu235+SY/X0gtjcvGfsHOrLziphRFHT7vbVhl7lxbu7JuHaxZAxdfbMdEJFhuJomjjrKEkKhTJyul2lr77WffyiUlDcecs9spHrmeOnXzBBH/ch991PLnS7a5kS8opN2R/Vv+hBni7bdtc6HE3F1TA3feGU1MItkgN5PETTdZedX6jRacsxHesWODk8fWmDSpocpeQQEMGQIzZlgfRwrtsEPw8Y0boVu3zY/V1lriSNaQAhg9Oniw++hj8+nYsXWxRmnFiuAewE2bUj65TaRNyc0kseuu8N578JOfWIf+qafCtGn2N1VKS+0n6rp19o09dSrstVfqnj/m5z9v/KVeVARHHLF5AnnkEctP5eXQs6dVmF2zpvHzXXmljWmUlFgeLSuzhlG2Fx085JDgNSPt2tkENxEJpj2u24CxY+G666xBtHEjDBpkA7KdO9v9r78Oxx67+Vh9UZGd98ILwc/56ae2OrxXLxtGaU4V27T69lt49FFbuzFokA0wtLDVd/31cMcdVnwRbJ3gDjvAu+9Chw5piFkkYqnY41pJoo2oqrJJVd27Nx5WGTHCJm4lKimxx+yyi91evBgWLrQGT8+e6Y+52WbNgqOPtv6yqirrwjvgAMtw8eM+W+A9PP20JYrVq+19+dnPGpKpSFuTiiSh/STaiHbtoG/f4PsWLw4+XlwMy5fbyuxzz7UyHsXFNpg7YgQ89FAG7I/tPZxxhnXb1Vu/3qYSjx1rc3ybyTnrUUxlr6JIW5ebYxI55qijgvfP3rDBZutee62to6iutum01dXW8rjxxvBjbeSjj+Cbbxofr6qCBx8MPRyRXKMkkQVa2yN4zTXW514Q124sLbU++g4drHR4VdXmj6mqsgV6kcvPT/4GBE1XEpGUUpLIUNXVNtOofgbtgAFNV3VtSo8etmDs0kttILpfP+tKuv56+/5NXHxeL76HJzJ77BG8dqW0FH784/DjEckxGrjOUMOHw4svNqyarte+vS3zuPLK1L3WIYdYoddEgwfbzODIvfee1dHYuNEGTIqK7PbEiRkwaCKSuTRwnWUqKqyLvUcPuyTzySfw0kuNEwTYmO2vfmUFbM86KzVxXXaZ/SiP/71QVgZ//Wtqnr/V9t/fCi89/bSNtA8caKVsI5+XK9L2qbspJLfeaiugjzzSaigNH568O+ejj5r+gVxZCX/4Q2riWrECrrqqcbd/aSnsnUn1/EpL4bzzbIClf38lCJGQKEmE4MknrYuoqsqKzFZX2xT/iy8OPn/vvYPrMcVbtiw1sY0bZ8sPElVXw7//nZrXEJHspSQRgj/9qWGVb72aGpg82RZ1Jdp9dzjmmKbXiaVqG9QlS4K7tWprU5eIRCR7bTFJOOfynHNnhhFMW/XVV8HHCwqs2kQjNTU8ceRYPuhyOL9yt5BPw0/9+lqEt96amtiOOMIGwxM5ZzOqRCS3bTFJeO/rgMtDiCWrrV9v5R6OO86mmr7zTsN9Rx0VPKW/uLihJMb3amth8GAKr/8Fuy5/g5v99TxbfBqHbf8pO+xgYxlvvAEHHZSauE85xcZI4lstpaVW6+nAA1PzGi3lvU33Pf10OPFEmDAheHsOEQlBc7avA34DXAP0BLapv7R2W7zmXlK+fWmKrVnj/e67N+xYmpdn1x95xO7/7DPvu3TxvrCwYSfT0lLvH3444Mkef9z79u2Dtz5duDAt8a9bZ7uq9u7t/f77e3/nnd5v3JiWl2qWK6/0vqys4Z9eVub98OHe19VFF5NINiIF25c2a52Ec+6z+LwSl2CasddZ62X6Ook//AFuuaVx337HjrZ3Q1GR7Vlw663w8su2oO3aa62rp5Ef/ciWQCeqn5N6ySVp+Bdkjo8/thZM4grwsjJbFnH00dHEJZKNwlwncS3wvPd+rXPuN8BBQIomYWavhQvt+/zee4MHf72HefMa9nAYO7YZT7r99jb/NXF6U15e05tTtxEvvhh8vKLCZlspSYiEq7mzm34dSxADgWOAB4FMqOwTmSeftGrVY8YkGXzGhhc6dWrhE19yyeZFluqVlMDQoVt8uPf2RXvRRXD++Va4LwsW1X+vU6fg8ZuiIujSJfx4RHJdc5NE/bDhCcDd3vtngIC6ormhutrWOFRVJV/PkJ9v+zLsuWcLn3y33Rp2DOrY0aYe7bKLLcEOKuWa4Kqr4OSTbf3Dww/b4G82lTg66aTgdXL5+Zb0RCRczU0SXzrn/gGcCfzbOVfcgse2ObNmJV/wm59v3+t77BG80U+zDB8OK1daM+DVV+Gzz2wP0S2YP9+6vuLXZFRU2IZub721lbGErH1761baZhvLkfVbqI4fb2M5IhKu5o5JnAkMBW733q9xzvUAft7UA5xzDwDDgZXe+/1ix7YBJgC9gM+BM733AcvJMltJCdTVBd/Xty/8/e82DtGqyhGFhS1eqPD8802vnj7kkFbEE6KBA21tyWuvWdXbI46wTZVEJHzNag147yu990957xfGbi/33k/ZwsMexBJLvOuAF733ewIvxm5nnfLy4LGGsjL47W/tyziK0kLt2wfXfCoszL49nAsLrc7VcccpQYhEKW1dRt776UDikO7JwLjY9XHAiHS9fjrl5cGzz8K229qXb/v21roYOdJ6iqJy+unBx/PyUlcxVkRyS9ilwrfz3i8Ha40457onO9E5NxIYCbDzzjuHFF7zHXCA1Tb6z39sd83Bg6PvM+/a1ca8zzqrYYZQba0NYgft2yMisiVp3XTIOdcLmBw3JrHGe9857v7V3vstTmzM9MV0maaiwqrM1tXZuoJs62oSkdTIxk2HVjjnesRaET2AlSG/fk4oK7NpsCIirRX2NNZJwIWx6xcCWztJVEREQpC2JOGcexR4E9jLObfUOXcpcCtwjHNuIbZyO0UFr5vJe3jiCVu5PGRI8h13WuGbb2DUKBsf2H57q9FUWZnSlxARCU1axyRSJWVjEpdcYiO79avNyspg0CCbqpTX+nxZXQ377mvF/OpXYpeUWFnv117TjpsiEq5UjEnkzqrp996Dxx5rvBz51VeTV5VrSnU1PPSQFUm68UZYupQnnrCF0vGlOqqrrcjf66+3+l8gIhK6sAeuozNtWvAy6YoKmDrV9gttru++g/79rclQUWG7B912G28N/ZD163dqdPrGjTB3rq0kFhHZotWrrZ7OZ5/Zd81JJwWvlA1B7iSJbbaxN7mmZvPjJSUtL8H95z/bf7z656qpgZoaer9wF6WlN1FZuXm/UlER7Lpr46eZN8+K8NXUwKmnWvkJdUmJ5Lh334Uf/MB+XVZW2mrdXr1sS8oI5rPnTnfTiBHB4w55efDDH7bsuf71r8bJBjhvw/9RXFi32Rd9fr6tzE6s8j1mjP1AGDMG7rwTTjjB9hvKgiEiEUmn886z3or6GS/r19vmNTffHEk4uZMk2reHKVOge3fLxh07WjnuJ5+EHXZo2XMlKSbU2a/m9Ylfc8gh1mgpLLT9rV9/ffM9EpYtg+uvt1LjmzZZYqiosL2cX321Ff9GEcluX30Fn3zS+HhNDTzySPjxkEvdTQCHHmrf0G+9ZU25Qw9t1h4NjfzkJ3DNNZvPbc3Lg/32Y5/B2zFzJqxbZ4mhtLTxw597LnhjncpKy1mB25qKSNuXn5+8OyFoM7IQ5FaSAPuP0L9/655j5EiYPt02jMjLs0uXLvD449+f0lTXYXFx8NhDXp4NkYhIjurWzQrDvf325hNt2rWLbH/73FonkWoLFsCMGVY9b8iQ4OZBgDVr7CGJi+zatbMNjZqxv5CItFWffmpTISsqrJupsND2H3j+efuF2QLZWLupbdlnH7u0UOfONvZ95pnWevDexiZuuUUJQiTn7b47LF4MkyfDkiWWIA47LLKpj0oSETnhBBsemTzZfiwcfzz06BF1VCKSEYqKbF58BlCSiFCnTjbbTUQkU+XOFNiIrF1r6+7iS3WIiGQLJYk0qaqCCy6wZRn7729/77svhS9QUWEZSHJXdTW8/DLMnBlcckYkBZQk0uRHP7IZsTU19n2+Zg1ceaVNUGiVr76yAYwuXaycyMEHW30PyS2PP26/PE4+2eqO7byzlXMQSTFNgU2DNWtsL4mAyh0MGmRLLMBm0N5+O8yfD/36wdVXb2Gf7Lo62Htv67+K3wejUydbpdnSGlSSnT7+GA480Jqr8bbd1mZDbM0CUWmTVCo8Q61cmbxg45Il9ve116C83PY9mjUL/vEP+K//gg8+aOKJp02zlkTiRkkbNsCDD6YidMkG998fPMi1YQP85z/hxyNtmpJEGvTqFTylOT8fDj/cro8aZYvpNm2y2xs3wvr1np/9rIknXrSo4QHxqqrgo49aG7Zki5Urg3dU9B6+/Tb8eKRNU5JIg6Ii+OMfN6/blJdnt2+4Ifl3uveOV18OSAL1+vYNzj5lZVaHSnLDCSdYwcpEtbVWYlokhZQk0mT0aNszpF8/K8Fx+ukwezb07m1JpKgweCyo04aVNqgRpLzckkF8gafCQuuLPvfcNPwrJCONGGH1feJ/hZSVwX//9xYGtURaTkkijU46yWYnLl1qZcB797bj+flwQb8FlLD5wGMpFVyRP9ZqdiTz7LNWgbZHD0sOF1xgVW2Dys1K21RQAC+9BH/5Cxx5JAwfblvz3n571JFJG6TZTRGp/t2tnHvjXjzHUIqpoZoSzuch7najyf/9DfDrX0cdoohkOc1uymIlQw7nqbLz+ZjeTGQEi9mFexlFfmlxo37ld96x+l4FBTbb9Re/sIksIiLpptpNURk4EAYPpufLL9Oz4hU7VlpqCWLgwO9PW7TINiFav95ur10Lf/ubFYmcMCGCuEUkp6glERXnYOJEuOMOGDDANkK64w7byChuBtOYMVZ9IV5VFUyaBF98EXLMIpJz1JKIUkEBXHqpXZKYMyd4SnxxsS287dkzjfGJSM5TSyLD9e0bvLVtTU3DbCkRkXRRkshwV1/deN/rdu1seq1aESKSbkoSGW633eCVV2zYIi8POnaEyy+H8eOjjkxEcoHGJLLAQQfBG29EHYWI5CK1JEREJCklCRERSartJgnvYe5cq3X01VdRRyMikpXa5pjEypVw3HGwcKFV06upgcsug//93+BS2yIiEqhttiTOOsv2BK2osDoWNTVw332aEiQi0kJtL0msWAFvvtl4mXJFhZW9EBGRZmt7SWLt2uAlygCrV4cbi4hIlmt7SWK33WyXrkSFhbZMWUREmq3tJYn8fHjgASu7nZ9vx9q1g+7d4Ve/ija2rbV6tVWMfeGF4Gp/IiJp0jZnN51wAsyaBX/9q23IcMwxMHIkdO4cdWQtN3asbVdaVGTTektK4PnnbRm2iEiaRbJ9qXPuc2AdsAmo3dL2em1x+9JmmT3bNiGqrNz8uHM2pffmm6FLl2hiE5GMl+3blx7pvT+wtf+ANu3eexvvOATWorj3XujXz6b3ioikSdsbk2hLvv0W6uqC76uttZXkTz4ZbkyJqqvhpZfg1Vc1XiLSBkWVJDwwxTn3tnNuZNAJzrmRzrnZzrnZq1atCjm8DHHaacEzteqtXw8zZ4YXT6JJk2xCwCmnwPDh0KOHrVERkTYjqiRxuPf+IOB4YLRz7ojEE7z393jvy7335d26dQs/wkxw+ulQXt5416F6paWw++7hxlRvyRI45xxYt87WpqxdC19/DUOH2sJFEWkTIkkS3vtlsb8rgaeBflHEkfEKCmDqVBt/aNeu8f2FhXD++Zsfq6mx8487Ds4+G6ZPT09s48cHdy95D888k57XFJHQhZ4knHNlzrkO9deBY4H5YceRNQoL4Yc/hI8/tplORUV26dvXxgHiZzfV1MCgQfDTn8KUKTBhAhx/PPz5z6mP65tvYMOGxsdra7WyXaQNiaIlsR3wmnPuXWAW8Kz3/vkI4sguO+0EL79sFW6XL4c5c2D//Tc/57HH4IMPNu/uqayEG26wL/VUGjoU2rcPvu/oo1P7WiISmdCThPd+kff+gNhlX+/9zWHHkNU6dYJttgm+76mngscDioqs1ZFKRx9trZb4gfWyMrjoIthrr9S+lohEpm2uuM5VXbtCXl7jabPep361eV6ezW6aMMHGJ4qK4Mc/tllOzfHZZ7B4Mey7L+TqxASRLBDJiuuWytkV1y2VbIV2jx7wxRcNtayitH69Te2dPh2Ki22dxciR8Je/WOIRkZTJ9hXXkmrl5TBmjM2E6tgROnSwsYypUzMjQQCMGgWvvGLJ4bvvbLD9/vvh7rujjkxEAqgl0RatWwevv26Jon//zPmFXllp4ylBpUT22MO2mxWRlElFS0JjEmGpq7Nf9DNn2q/7M86wX/rp0KGDzT7KNE0tstO0WZGMpCQRhqoqOPJIeP9965MvK4Orr7Z++cRprG1Z1642PvL555sfz8uDIUMiCUlEmpYh/RBt3O23w7x5liDAflGvWWMronOJc3DPPVZOpL4LrKjIpvX+8Y/RxiYigZQkwvDQQ9aaSLRoESxdGn48UTrmGJgxw1aR9+8PV1wB771n286KSMZRd1MYnNu6+9qq/feHceOijkJEmkEtiTBceGHjAn3OwZ57wo47RhOTiEgzKElsjVdegQEDbIrpfvvB0083ff7VV9ue1O3bW198+/ZWmO+xx8KJV0RkK6m7qaVefhmGDWsYY3j/fetfv+suuOCC4MeUlFjtpGnTGqbAnnaaDeCKiGQwtSSSWbfOahGVllq57uOPh08/hWuvbTwIXVlpx5tamOgcHHUU/PKXtgeEEoSIZAG1JIJ4D8ceC++807A6eMoUOPTQ4FlKYLuyVVQkL58tIpKF1JIIMmuWTcuMLx9RV2cJItme06Wlah2ISJujJBFkwYLg45WVsPfejZNBaSn84heZUyNJRCRF9K0WZO+9g4+XlsKIEXDHHbYHQlGR1Un65S/tIiLSxmhMIsihh9rU1rlzG7qc8vJsrcPFF9v01UsugbVrLUlkShluEZEUU0siiHNWsfX88y0x5OdbOYmZMy1BgCWNzp2VIESkTVNLIkhtra1rOPxwuO462H33qCMSEYmEkkSiDz+0st6VlbBpk10uugj+/vfcrLMkIjlN3U3xvIeTToIVK2y8oaLCttkcPx4mTIg6OhGR0ClJxPvgA1i2rPHK6YoKK7shIpJjlCTiVVUlX+vQ1NabIiJtlJJEvAMPhIKAYZp27eCcc8KPR0QkYkoS8QoK4OGHG4r6gdVi2mcf+MlPoo1NRCQCmt2UaNgwmD8f7rsPv3QpK/sOZePwL/VYAAAIhklEQVRJp7FTaVHUkYmIhE4tiSC77sqbw29mt+nj2O36c9hz3yL69oVPPok6MBGRcKklEWDFCqsUvn59w7F582DQIFiypKEnSkSkrVNLIsC4cbboOl5dnU1weu65aGISEYmCkkSAJUtsDV2i2lr48svw4xERiYqSRIBBg4I3mHMOBgwIPx4RkagoSQQ45RTYdVcoKWk4VloKRx9tSylERHKFkkSAoiJ44w3bbG7PPWHffeHWW+HJJ9P8wp9/DldeaU2Z//f/4LPP0vyCIiJNcz6xTlEGKi8v97Nnz446jPR6910YONA2Odq40aZQFRfD9OnQt2/U0YlIFnLOve29L2/Nc6glkSkuv9zm3G7caLc3brTbl18ebVwiktOUJDLFm28GH58xo3FVWhGRkChJZIqg6VQAZWXa7EhEIqMkkSlGjrRqs/HatbPjIiIRiSRJOOeGOuc+cs594py7LooYMs5NN8EJJ9i8206d7O+wYXDzzVFHJiI5LPTaTc65fGAscAywFHjLOTfJe/9B2LFklKIiePxxW+790UfQuzfsskvUUYlIjouiwF8/4BPv/SIA59xjwMlAbieJejvvbBcRkQwQRXfTjsAXcbeXxo6JiEiGiSJJBE3VaTTH0zk30jk32zk3e9WqVSGEJSIiiaJIEkuBnnG3dwKWJZ7kvb/He1/uvS/v1q1baMGJiEiDKJLEW8CezrldnXNFwNnApAjiEBGRLQh94Np7X+ucuxz4D5APPOC9fz/sOEREZMuyosCfc24VsLiZp3cFvk5jOOmiuMOXrbEr7nBlc9xl3vtW9ddnRZJoCefc7NZWPYyC4g5ftsauuMOV63GrLIeIiCSlJCEiIkm1xSRxT9QBbCXFHb5sjV1xhyun425zYxIiIpI6bbElISIiKZK1SWJL5cadc8XOuQmx+2c653qFH2WjmHo656Y55xY45953zl0ZcM5g59x3zrm5sctvo4g1kXPuc+fce7GYGm047sxfY+/3POfcQVHEmRDTXnHv41zn3Frn3FUJ52TM++2ce8A5t9I5Nz/u2DbOuanOuYWxv12SPPbC2DkLnXMXhhd10rhvc859GPssPO2c65zksU1+rtIpSdy/c859Gfd5GJbksZFtd5Ak7glxMX/unJub5LEtf7+991l3wRbhfQrsBhQB7wJ9Es75b+Du2PWzgQkZEHcP4KDY9Q7AxwFxDwYmRx1rQOyfA12buH8Y8BxWm6s/MDPqmAM+M18Bu2Tq+w0cARwEzI879mfgutj164A/BTxuG2BR7G+X2PUuEcd9LFAQu/6noLib87mKIO7fAdc047PU5PdP2HEn3P8/wG9T9X5na0vi+3Lj3vsNQH258XgnA+Ni158AhjgX7T6g3vvl3vs5sevrgAW0nQq4JwMPeTMD6Oyc6xF1UHGGAJ9675u7KDN03vvpwLcJh+M/x+OAEQEPPQ6Y6r3/1nu/GpgKDE1boAmC4vbeT/He18ZuzsBqtGWUJO93czTn+ydtmoo79h13JvBoql4vW5NEc8qNf39O7MP6HbBtKNE1Q6z7qy8wM+DuAc65d51zzznn9g01sOQ8MMU597ZzLmhP1UwvAX82yf/HycT3u9523vvlYD8ygO4B52T6e38J1soMsqXPVRQuj3WTPZCkey+T3+9BwArv/cIk97f4/c7WJNGccuPNKkkeBedce+BJ4Crv/dqEu+dgXSIHAHcCE8OOL4nDvfcHAccDo51zRyTcn8nvdxFwEvB4wN2Z+n63RCa/99cDtcA/k5yypc9V2O4CdgcOBJZjXTeJMvb9Bs6h6VZEi9/vbE0SzSk3/v05zrkCoBNb17RMKedcIZYg/um9fyrxfu/9Wu/9+tj1fwOFzrmuIYfZiPd+WezvSuBprMkdr1kl4CNyPDDHe78i8Y5Mfb/jrKjvtov9XRlwTka+97EB9OHAeT7WIZ6oGZ+rUHnvV3jvN3nv64B7k8STqe93AXAqMCHZOVvzfmdrkmhOufFJQP0sj9OBl5J9UMMS6y+8H1jgvR+T5Jzt68dOnHP9sP9G34QXZWBMZc65DvXXsUHJ+QmnTQIuiM1y6g98V99NkgGS/rrKxPc7Qfzn+ELgmYBz/gMc65zrEuseOTZ2LDLOuaHAtcBJ3vvKJOc053MVqoRxtFMIjidTtzs4GvjQe7806M6tfr/DGpFPwwj/MGx20KfA9bFjv8c+lAAlWPfCJ8AsYLcMiHkg1iydB8yNXYYBlwGXxc65HHgfmzExAzgsA+LeLRbPu7HY6t/v+LgdMDb23+M9oDzquGNxlWJf+p3ijmXk+40lsuXARuzX6qXYONqLwMLY321i55YD98U99pLYZ/0T4OIMiPsTrN++/nNeP9NwB+DfTX2uIo57fOzzOw/74u+RGHfsdqPvnyjjjh1/sP5zHXduq99vrbgWEZGksrW7SUREQqAkISIiSSlJiIhIUkoSIiKSlJKEiIgkpSQh0gyx6qDXJBzrFV+Js4nHvpG+yETSS0lCJM2894dFHYPI1lKSEEnCOXd9bM+AF4C9YscOjhUDfBMYHXfuRc65Z5xzz8cec0PcfevDj14kNZQkRAI45w7Gyi30xerhHBK76/+AK7z3AwIe1g84DysOd4ZzrjyMWEXSSUlCJNgg4GnvfaW3Sr2TgDKgs/f+ldg54xMeM9V7/433vgp4CivDIpLVlCREkkusWVMRcKyp81XzRrKekoRIsOnAKc65drHKmSfGjn/nnKtvIZyX8JhjnO1J3Q7bQe71kGIVSZuCqAMQyUTe+znOuQlYBdPFwKuxuy4GHnDOVdK4HPdrWBfUHsAj3vvmbTQvksFUBVYkBZxzF2Hl0S+POhaRVFJ3k4iIJKWWhIiIJKWWhIiIJKUkISIiSSlJiIhIUkoSIiKSlJKEiIgkpSQhIiJJ/X8ngpVJCM/1HQAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"savings['age'] = np.where(savings.pop15 > 35, 'red', 'blue')\n",
"plt.scatter(savings.ddpi, savings.sr, color=savings.age)\n",
"plt.xlabel(\"ddpi\")\n",
"plt.ylabel(\"sr\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Would be nice to have a legend but `matplotlib` does not make this easy. Fortunately, `seaborn` makes this more convenient:"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/anaconda/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"text/plain": [
""
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAFgCAYAAAASHMbTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8pGV9///XZ+45ZHLYTfYEyx5ZZYsIArqcYaUoFpRqbStC+61grWCrLbbVwrd+vxa1tthaLd/WKngC/bWAWqkoilIprIAiK4dFBAGXXXZhN+dkMufDff3+uO9JJslMMpPMPfccPs/HI48kk8nMtbPZfee67s/1ucQYg1JKKeWHgN8DUEop1bk0hJRSSvlGQ0gppZRvNISUUkr5RkNIKaWUbzSElFJK+UZDSCmllG80hJRSSvlGQ0gppZRvgn4PoBoXXHCBueuuu/wehlJK1Ur8HkCza4mZ0MjIiN9DUEop5YGWCCGllFLtSUNIKaWUbzSElFJK+UZDSCmllG80hJRSSvlGQ0gppZRvNISUUkr5RkNIKaWUbzSElFJK+UZDSCmllG80hJRSSvlGQ0gppRZgjMEY4/cw2paGkFJKVWDbhsOxNLZmkGda4igHpZRqtIIbQJlcwe+htDUNIaWUmiNfsDkcS5PN234Ppe1pCCmlVIlcwebwZJpcQQOoETSElFLKlc07AZS3NYAaRUNIKaWAdK7AYCxNQasQGkpDSCnV8VJZJ4BsLcVuOA0hpVRHi2fyDE9ldC+QTzSElFIdazKZYzSR8XsYHU1DSCnVkUbjGSZTOb+H0fE0hJRSHcUYw3A8Qzyd93soCg0hpVQHsW3D4FSaVFa7IDQLDSGlVEfQLgjNSUNIKdX2snmbwZh2QWhGGkJKqbamm1Cbm4aQUqptJTJ5hnQPUFPTEFJKtaVYOsfIlO4BanYaQkqptjOeyDKezPo9DFUFz05WFZEuEfmpiDwuIk+KyEfc228SkedF5DH37SSvxqCU6izGGIanMhpALcTLmVAGOM8YExeREHC/iHzP/doHjTHf8PC5lVIdxhjDYCxDMqubUFuJZyFknCuBcffTkPumVweVUnWnR3G3Ls+W4wBExBKRx4Ah4G5jzEPulz4uIntE5NMiEqnwvVeIyG4R2T08POzlMJVSLSxXsHlpIqUB1KI8DSFjTMEYcxKwEThVRI4H/jdwLHAKsAq4usL33miM2WGM2bF27Vovh6mUalHpXIGXJlK6CbWFeRpCRcaYCeBe4AJjzCHjyABfBk5txBiUUu0lmc1zeFI3obY6L6vj1opIv/txFHg98LSIrHdvE+C3gJ97NQalVHuaSucYjGX0JNQ24GV13HrgZhGxcMLua8aY74jIPSKyFhDgMeA9Ho5BKdVmJpJZxhJagt0uvKyO2wOcXOb287x6TqVUexuJZ4jpQXRtRTsmKKWanjGGoakMiYzuAWo3GkJKqaZWsA2DsTRpLcFuSxpCSqmmlS/YHJrUc4DamYaQUqopZfIFBicz5G0NoHamIaSUajqprHMQnZZgtz8NIaVUU4ln8gzrQXQdQ0NIKdU0JpM5RhN6EF0n0RBSSjWF0XiGSd0D1HE0hJRSvioeRBfXPUAdSUNIKeUb2zYMTqVJZXUPUKfSEFJK+SJfsDkcS5PNawl2J9MQUko1XDZvMxjTTahKQ0gp1WDpnLMHSM8BUqAhpJRqoEQmz5DuAVIlNISUUg0RS+cYmdI9QGo2DSGllOfGE1nGk3oQnZpPQ0gp5RljDCPxLFNp3YSqytMQUkp5wradg+iSWd2EqirTEFJK1V3BNhyOpcnoQXRqERpCSqm6yhVsDutBdKpKGkJKqbrRg+hUrTSElFJ1kc4VODypB9Gp2mgIKaWWLZnNMxjTTaiqdhpCSqllmUrnGIlnNYDUkmgIKaWWTE9CVculIaSUWpKxRJYJ7YKglklDSClVMz2KW9WLhpBSqibDUxltw6PqJuDVA4tIl4j8VEQeF5EnReQj7u1Hi8hDIvKsiNwmImGvxqCUqq+hqbQGkKorz0IIyADnGWNOBE4CLhCR04FPAJ82xhwDjAPv8nAMSqk6MMYwGEsTT2sfOFVfnoWQccTdT0PumwHOA77h3n4z8FtejUEptXxOAGVIZDSAVP15ORNCRCwReQwYAu4GfgVMGGOKP80HgQ0VvvcKEdktIruHh4e9HKZSqgJjnEak2glbecXTEDLGFIwxJwEbgVOBV5S7W4XvvdEYs8MYs2Pt2rVeDlMpVYZtGw5NpklltRO28o6nIVRkjJkA7gVOB/pFpFiVtxF4qRFjUEpVz7YNh2Jp0noUg/KYl9Vxa0Wk3/04CrweeAr4H+B33btdBnzLqzEopWpXsA0vTab0LCDVEF7uE1oP3CwiFk7Yfc0Y8x0R+QVwq4j8LfAo8EUPx6CUqkG+YHNIzwJSDeRZCBlj9gAnl7l9L871IaVUE8nmbQZjGkCqsbRjglKKVLbAYEzPAlKNpyGkVIfToxiUnzSElOpg44ks49oJW/lIQ0ipDmSMYTie0TY8yncaQkp1GNs2DE7pJlTVHDSElOog+YLN4ViabF4r4FRz0BBSqkNk8zaHJ9PkbQ0g1Tw0hJTqAJl8gcOTaQq2VsCp5tKQ3nFKKf9oAKlmpjMhpdpYOudsQtUAUs1KQ0ipNpXOOTMg7YKgmpkuxynVhjSAVKvQmZBSbSaVLXA4ltY2PKol6ExIqTaSzOY1gOps73CcLz/wvN/DaFs6E1KqTSSzeQZjGQ2gOhmeyvDlB/bx/ScPg8Dp21Zz/IaVfg+r7WgIKdUGEpk8Q1MaQPUQz+S55acv8J+PvDjdWWLb6h6S2ubIExpCSrW4eCbPsAbQsuUKNnc8/hJf/fF+Ym5j14HuEJefuZX3vPZlREKWzyNsTxpCSrWwqXSO4amM38NoabYx3PvLYb54//McmkwD0BUK8PYdm7h4xyaiYYugpZfPvaIhpFSL0gBavkdfGOfGXc/zy8EpAAICF73qKN5xxhZW9YR9Hl1n0BBSqgXF0jlGNICWbO9wnM//6Hkeen5s+rZzjlnDu84+ms2ruuvzJMaASH0eq41pCCnVYiZTOUbjGkBLUVrxVryC9sqjVnDlzm31rXxLT0JmClZurN9jtikNIaVayGQyx2hCA6hW5SreNg1Eefc52zjr5auRes1YcmlIDEM+A1aoPo/Z5jSElGoRE8ksY4ms38NoKdm8zbf3zK94u+zMrbzphPVYgTqFj12A5CikY/V5vA6iIaRUCxhPZBlPagBVq5qKt7pJTzoBpIcFLomGkFJNbiyRZUIDqGoNq3grXXpTS6YhpFQTG41nmEzl/B5GS3h+JMGNu/Z6W/EGuvRWZxpCSjWpkXiGmAbQohpW8Qa69OYBz0JIRDYBXwGOBGzgRmPM9SJyLfBuYNi9618bY77r1TiUakXDUxmm0hpAC4ln8tzqVrxlvKx4A8inITmiS28e8HImlAf+0hjziIj0AT8Tkbvdr33aGPNJD59bqZY1NJUm7lZyqfkW6vH2xnpWvAHYBaz0GJDXjace8SyEjDGHgEPux1Mi8hSwwavnU6odDMXSxDMaQOU0tOINkEwMKz2GmAJ01/GakpqlIdeERGQrcDLwEHAW8D4ReQewG2e2NF7me64ArgDYvHlzI4aplG+MMQxPZTSAKmhkjzfJpwmkRgkU0nV9XFWeeN3+XUR6gfuAjxtjvikiRwAjgAE+Bqw3xvzhQo+xY8cOs3v3bk/HqZRfjDEMTWVIaADN8/xIgs//aC8/2TtT8Xb2y9fwR+fUueINppfeAtn5VW9H9Xdj1bocZ4VgYIuu4S3C05mQiISA/wT+3RjzTQBjzGDJ1z8PfMfLMSjVzIwxDMYyJLMaQKWGpzLc9KBT8Wa7vyd7VvHGnKU31VBeVscJ8EXgKWPMp0puX+9eLwJ4K/Bzr8agVDOzbcPgVJqUntg5rVjx9o2SHm8bB6Jc4UXFG7r01gy8nAmdBfwB8ISIPObe9tfApSJyEs5y3D7gSg/HoFRTKtiGw7E0mZwGEDgVb99+/CW+UqbH2xuPP7L+h8otsPSmGsvL6rj7gXK/tuieINXR8gWbw7H09G/6ncw2hvt+OcwXGlTxBrr01my0Y4JSDZTN2wzG0uQKGkCPHZjghvv2NuxUU116a04aQko1SDpXYDCWpmB7W5Ha7CpWvJ19NJtXe7AfR5fempqGkFINkMjkGZrK4PWWiGbW6Io3jCGQmSSQmdCltyamIaSUxzr9OO54Js9tDx/gGz876H2PN5dk4851H1v77zU7DSGlPNTJZwE1vOINkFyKQHpMr/u0EA0hpTzQyW14TLHH2wPP89LETMXbxTs28XaPKt4oZLFSowTyyfo/tvKUhpBSddbJm1AfOzDBDbv28svDMxVvb3rVei47Y6snFW/Yeaz0uBYdtDANIaXqqFP3ADW0xxuAsQmkJ5yiAzq32KMdaAgpVSeZfIHByQz5Djp1c3gqw80P7uOukoq349av4D2v9bDiLRsjkB7Xirc2oSGkVB2kss4eILtDSrDLVbxtdCveztaKN1UDDSGllimeyTPcIXuAKlW8veOMrbzpBI8q3vIpAimteGtXGkJKLcNEMstYov1LsIsVb3N7vF38mk1cfMpGusMe/FeiFW8dQUNIqSUaiWeIpdp/aejxAxN8TivelEc0hJSqUaechNrwHm/GJpCZIJCeROic4o5OpyGkVA0KtmEwlibdxucAacWbaiQNIaWq1O7HMCQyeW5teMVbwq14a//raqo8DSGlqtDOxzAUK96++pMXmHSvcWnFm2oUDSGlFjGVzjESz7ZdCbZvPd7SYwRyifo/tmpJGkJKLaBdu2CX6/Hm5ammxYPlJDulbXbULBpCSpXRrl2wy1W8nfXy1bz77G1a8aZ8oSGkOsa9Tw9xw669HBhPsmmgmyt3buPcY9fNu58xhsFYhmS2fQKoXMWbp6eaApKJYaXHEdM+r6OqPw0h1RHufXqID9/xJCFL6I+GGJpK8+E7nuSjMCuIbNtwuI1KsCv1eLvCy1NNcyms1Chid+5psqp6GkKqI9yway8hS6bby3SHgySzeW7YtXc6hNrpGAan4u0QX/3J/lkVb16eakohh5Ua0TY7qiYaQqojHBhP0h8NzbotGrI4OO78h9kue4CMMdz3jNPjrbTi7e07NnGxVxVvxrjXfca16EDVTENIdYRNA90MTaVnNdpM5QpsHOhumz1Aj7sVb083qscbzn4fKzmim03VkmkIqY5w5c5tfPiOJ0lm80RDFqlcgVzBcNkZWzg0mW7pPUANr3gDp+Q6NUogN+XN46uOoSGkOsK5x67jozjXhg6OJ9k40M3/Om0z24/sa9kAqtTj7cqd2zhhozcVb1CsehvTPm+qLjSEVMc499h100UIo/HM9AX7VlOp4u2Pzjmac16+xpOKNwAKGazkiLbaUXXlWQiJyCbgK8CRgA3caIy5XkRWAbcBW4F9wMXGmHGvxqFUqVbehFrpVFNPK97A2XCaHsfKTHjz+KqjeTkTygN/aYx5RET6gJ+JyN3A5cAPjTHXicg1wDXA1R6OQynA2QM0OJUmlW2tZaSyp5oGA1x8yiYu3uHRqaYuycadPT+64VR5xLOfXmPMIeCQ+/GUiDwFbADeApzr3u1m4F40hJTHWnUPUMNPNS3SPT+qQRpyTUhEtgInAw8BR7gBhTHmkIjM75vifM8VwBUAmzdvbsQwVZvK5AsMTmbI260TQL5UvIG752ecQHpC9/yohvA8hESkF/hP4P3GmFi1F02NMTcCNwLs2LFD/zWoJUllnT1AdotUwPlV8QbFdju650c1lqchJCIhnAD6d2PMN92bB0VkvTsLWg8MeTkG1bnimTzDU5mWKMGudKqp5xVvAHbe3fMT9+45lKrAy+o4Ab4IPGWM+VTJl+4ALgOuc99/y6sxqM41kcwylmj+3+gr9Xjz8lTTUoHMJIHUmB6z0AZE5L+ATUAXcL0x5kYReRfONfeXgGeBjDHmfSKyFvgcULzW8X5jzAN+jHvREBKRAPC7xpiv1fjYZwF/ADwhIo+5t/01Tvh8zX1xXgDeVuPjKrWgkXiGWJPvASrb4y3onGp68SneVrwBSD5NIDWqe37ayx8aY8ZEJAo8LCJ3Av8XeDUwBdwDPO7e93rg08aY+0VkM/B94BV+DHrRn3RjjC0i7wNqCiFjzP1ApTWE19XyWEpVwxjD0FSGRJPvASrb4+2E9bzjjC2s7o14++TGJpAaw8pOevs8yg9/JiJvdT/ehDMJuM8YMwYgIl8Htrtffz1wXMky7woR6TPGNLwPU7W/bt0tIh/A2WQ6fTh88Q+nlN8K7jlAmSY+B8i3ijdwqt6yMafqTff8tB0RORcnWM4wxiRF5F7gl1Se3QTc+6YaM8LKqg2hP3Tfvxdm1W1uq+9wlKpdrmBzeLJ5j2EoX/HWx5U7X+Z5xRvGINkprMwEYjf3EqValpXAuBtAxwKnA58HXisiAzjLcb8DPOHe/wfA+4B/BBCRk4wxj81/WO9VG0JXA3e5JdbFNcaPeTcs1bSeuRsevB4m9kP/FjjzKth+vm/DyeQLHJ5szmMYfK14MzaBTIxAZlJnPssmFa8rNJG7gPeIyB6cGdBPgBeBv8PZn/kS8AuguA77Z8Bn3PsHgV3Aexo9aACppnxVRPYYY14lImfj/KH+CfhrY8xpXg8QnH1Cu3fvbsRTqYU8czd87wMQCEMoCrkU2Fm48JO+BFGz7gHyteLNLhDIThLIxLTL9RIJQiRkEQkGiAQDhIOBpcWQFYKBLb7ml4j0GmPiIhIEbge+ZIy53c8xzVXtTKj40/wm4HPGmG+JyLXeDEk1rQevdwIo7F6/CHdD1r29wSGUyOQZarI9QJVONb14h/c93rDzTrl1Jqbl1jUKyJzQsTw4fdY/14rI63HKtn8A/JfP45mn2n8VL4rIDTgXvj4hIhGcC1uqk0zsh66B2beFojDxQkOHEUvnGJnKNPQ5F1O2x1sjKt4KWazMJJKd0jY7VbIkQCTkvIUti7DHe7H8ZIz5gN9jWEy1IXQxcAHwSWPMhNvp4IPeDUs1pf4tMDU4MxMCZ0muv3G9/ZptE2rZireXreaPzjmaLat7vHviQgYrPaFdDqoQDASIBC3CISEStAgF2jd0WlFVIWSMSQLfLPl8ukO26iBnXuVcE8oy+5rQmVc15Omb6SC6kXiGmx7cx10/n93j7T2v3cbxGzw81TSXchqM5n2vrG1aIStAOGjRFQwQCVlYXhaAqGXTk1VV9bafD3zSrY57wZkBNaA6zhjDcDxDPO1/lZdfp5pKNkEgM6EdDsqwJEBXyCISct5r6LQWDSFVm+3nN7QIoVm6IJSreOuPhnjHGVu46FXrval4MwbJxbHSE9rZusTsQoL2vqbTCTSEVNOy3S4IaR+7IDgVbyN84f69jevxpt0N5hBnlhOcCR5VHyISN8b0lrn9JuA7xphveD0GDSHVlJrhJNSG93gztltmPdnxe3xClhM2Xe4SW0tsF1VLoiGkmk4277Th8esk1EoVb+8+x7seb5KNOwfKdWj4FCvY9LoObL3mzgtwqo+PBp4H/nHfdW+6a7mPKyJ/wUwLti8YY/655GsC/AtwnvucDfsL0BBSTcXPLgjlK9487vFm57FSIwRyicXv20aK13W6QgEtmy7hBtBngAwwBqwHPrP1mjvfu5wgEpHXAO8ETsMJmIdE5L6Su7wV+DXgBOAInBY/X1rq89VCQ6iD3Pv0EDfs2suB8SSbBrq5cuc2zj12nd/DmjaVzjESzza8C0LFHm9nH805x3hZ8TaFlRrtkNmPXtep0gdxAijpfp4suX05s6GzgduNMQkAEfkmcE7J13cCtxhjCsBLInLPMp6rJhpCHeLep4f48B1PErKE/miIoak0H77jST4KTRFE44ks48nGVoDlCjbf2XOIr/x4bo+3LbzpBI8q3qBjZj/F6zpRt3xar+tU5WicGVCppHv7clTz4vvSckNDqEPcsGsvIUumq7m6w0GS2Tw37NrrewgNT2WYSjduE6ovFW+udr72o9d16uJ5nCW4ZMlt3e7ty7ELuElErsMJpLfiHHpX+vUrReQrwDrg14H/WOZzVkVDqEMcGE/SHw3Nui0asjg4nqzwHd6zbWcPUDLbuDLkxw9OcOOuvTx1qME93uwCVmq4rWY/AZHpTaJ6Xadu/hHnmhA4QdQNRNzbl8wY84hbdv1T96YvGGMeLVlqvh2nKOEJ4BngvnkP4hENoQ6xaaCboan0rN/yU7kCGwc8PtGzgkYfRLdvNMHndz3Pj/eOTt/WkB5vtNO1H72u47V9173prq3X3PlePKiOM8Z8CvjUnNt63fcG55C7htMQ6hBX7tzGh+94kmQ2TzRkkcoVyBUMV+5s/OG4qWyBoanGHETnS8VbUSHnXPvJ+zfbXK6QFaArFHT7sOl1nUZwA2fZodMqNIQ6xLnHruOjONeGDo4n2ehTdVyjzgFKZPLctvsAX989u+LtXWcfzU4PK94A52C5zCSBzETLHa+g13VUo2kIdZBzj13naxHCVDrHsMfnABUr3r764/1MlPR4u+xMjyvewO14MEEgPdkyB8vpdR3lNw0h1RBenwPkZ8UbxszMfJr8uk/x6Ori8lqbnSKqWpCGkPKUbTvHMHjZBfvxgxPccF8De7wVtUSjUSEcdIoJukIBwkG9rqOai4aQ8kw2bzMY864CrlzF25kvW82751S8/XTvGLc+fIBDsRTrV0S55JRNnLpt1bKeWzIxrMwEYjfHIXsOIWQJYcsiFBTCloaOan4aQsoT6ZzTA86LCrhaKt5+uneM6+95lmBAWNEVZDSR4fp7nuUqjllSEEk2jpUeb4rzfQQhHAoQsdySaa1eUy1IQ0jVnVcVcJUq3hbq8XbrwwcIBoRoyLn2USxPv/XhAzWFkOSSWKkxxPa2sGKBERAOBggFAoRD7ixHr+eoNuBZCInIl4CLgCFjzPHubdcC7waG3bv9tTHmu16NQTWeFz3gllPxdiiWYkXX7B/zrlCAw7FUVc8t+TSB1GiDj9WeHzghS2c5HePalfOOcuDayWXtGxKRjwEjxpjr3c8/DgwBG4ELcfrG/a0x5jYRORf4gDHmIve+/wrsNsbcJCL7gJuB3wRCwNuMMU+LyFqcNj+rgYeBC4DXGGNGFhublzOhm4B/Bb4y5/ZPG2M+6eHzKh940YKnWPH2xfuf58UJJzRqrXhbvyLKaCIzPRMCSOdsjlwRXfgb7TxWapRALr6sP0M1ggHn2o1TraaB09GcAJp3lAPXrnzvMoPoi8A3getFJABcAvwVzkThRGAN8LCI7KrisUaMMa8WkT8BPgD8EfA3wD3GmL8XkQuAK6odmGchZIzZJSJbvXp81Ty8KEAo1+PtjSes57IaK94uOWUT19/zLKlcga5QgHTOJm8bLjllU/lvMMbd6zPu2UbT0r05XUGLoO7NUTM8OcrBGLNPREZF5GSc84IexTneoXh8w6B7vtApQGyRh/um+/5nwG+7H5+N0xQVY8xdIjJe7dj8uCb0PhF5B7Ab+EtjTNWDVc0nnskzMpWp2yF01Va8zVWpAu7Ubau4imO49eEDHI6lOHKB6jjJJrDSo55UvAUDAaLhINGQ9lxTC/LqKAeALwCXA0fiHFj3hgr3ywOlvxl1zfl68cJogZkMWfLUvdEh9FngYzjrjx8D/omZ42ZnEZErcKd0mzdvbtT4VA1G45npc3iWaySe4eYH9/O9nx+arnh7xfo+rty5jVdt7F/wexergCu+VVTIOktvde7xFg5adIcsIiGLsJedGlQ78eooB3A6ZX8U51rO7+GEy5UicjOwCudguw+6Xz9ORCLufV4H3L/IY98PXAx8QkTeAAxUO6iGhpAxZrD4sYh8HvjOAve9EbgRYMeOHa3VgKvNFWzD0FSaVHb53QHKVbxt6I/yR+dU3+NtyRVwxiaQHieQmazT0psQDTubQqOhoPZdU0vhyVEOAMaYrIj8DzBhjCmIyO3AGcDjOBODvzLGHAYQka8Be4BncZbuFvMR4BYReTvOMRCHgKlqxtXQEBKR9caYQ+6nbwV+3sjn7wReH+GdyRcYimWWff2nUsXbO87YwkWvqq3H21Iq4JzjFcaW1emguE8nbFlEgs51Hi0oUMty7eRdXLty3lEOy62OA3ALEk4H3gbTxzd80H2bxRjzVziFC3Nv31ry8W7gXPfTSeA3jDF5ETkD+HVjTFX7Gbws0b4FZ4BrROQgTvXEuSJyEk7q7gOu9Or520GtgeL1Ed7JbJ6h2PKu/1SqeHvbjo1cvGMTPZHafyRrqoArZLCSIzWXXBd7rkWCTgVb0BItKFDecAKnrkc5iMhxOCtPtxtjnq3nY7s2A19zgy6LsxWnurF53VK/Hnbs2GF2797t9zAaqjRQSs//+eibX1kxUC698SfzDq5LZvOs6+vilitOX9Z4JlM5RuPL26i55+AEN9Sh4m2u0mtCpRVwV51X0hXBLhBIj2NlJ6t+3IAI0VCQ7rCl3QhU7awQDGzRH5pFaMeEJnXDrr2ELJkOlO5wkGQ2zw279lYMIa+O8B5LZJlYxgbU/aMJPv+j53nwV96carpYBZxkYljpsao6XIt7Xac7bOnymlINoCHUpJYSKPU+wtsYpwN2PL206yaj8Qw3LbHirVblKuCq63bgNP3sCjnl09rwU6nG0hBqUksJlHoe4V2wDcNL7IBQrHj7xu6DpEsq3t59TuUeb3VlF9xuB/OLcyyZ6UwQDmroKOU3DaEmtZRAqdcR3umcUwGXt2urgKtnxdtSOVVvoyVLb07VWpe7SVT36yjVXLQwocFqqXgr3nc5gVKriWSW8WSupg7Yxhh2PTvCF35Uv4q3mhVyWKkRAvkkwUCASMgiGgrodR3lHy1MqIqGUAMtpeKtHs9ZTejlCjZDUxkyudo2oJbr8Xbh8eu5/EyPTzUtMgYrM0F3YYquoGh3AtU8NISqostxDbSUirflqHbfUCydYyyerWn/T7mKt2p6vNVLyArQTYru3DhdUYMQ9vw5lVL1pyHUQF6VUFeyWOgVbMNIPEMi4xQfRPffw8pHP0sodoDcik1MnvwcR/WCAAAgAElEQVTHpLacN+sxy/V4q3SqaT2JOHuAusNBugM5QqlRyGfAgmX0TlRK+UxDqIE2DXSzZewBLs3/F0fYgwwGjuCW4G+xf9VZnjzfQqE3t/gguv8e1uz6ECYQxo70E0wMsWbXhxjZ+XFSW86rWPFWS4+3WoWsAD2RIFG3sECMgeQIJBbrNK+UahUaQot55m548HqY2A/9W+DMq2D7+Ut6qGtefoA1P7qBHEGmpJeVhVH+tHADIy/fjNPSqb7KlXkns3mOWNHFSxOz+6qtfPSzJAsWw0nIFZKELGFtxKL7kRu4ZezX+EoDKt6mZzuhINGwRThY8tjZJMQHwV5+01SlVPPQEFrIM3fD9z4AgTB0DcDUoPM5n1xSEJ34ws0kensZTAco5G2sYDf9XTYbXrgZt6fgkpUrQJhb5p3I5snkbH731Rvnfb89tp+XUhFEDJZALm+4LXM8/9/463lh73PATMXb20/ZVNWpptUIiNAdsZxltpBFIDBnRmUMJEYgPb/dzkN7R7l19wEOT6Y4cmWUS3Zs4rRtq+syLqVUY2h13EJuusgJnnDJBtFsEvqOgMsrnkJR2T+f4IRZ6dKVMZCegPfvWfIwF6q6A/i3e3/FgfEER/RVPtAtfuOFrMiNkg1E2VPYwhdyb+Bp2zl9tN4VbyJCd9iiN+L0Zau4lJfPwNRhKMw/s+ihvaNcf8+zhCwhErTI5J0/81XnHaNBpJqDVsdVRWdCC5nY74RGqVAUJl5Y2uP1b5kfarkU9C/v0L5KBQj/du+vuP7Sk7jud05Y9DG+aP8mF5tv85n0m3nQPm769iOtGH//B+ctu+ItIE5Ptp5IhRlPKWMgNe68Vfgl6dbdB6bb7QDu+zy37j6gIaRUC9EQWki9Q+PMq5zlvCxOmOVSYGed25dhbgFCwTZYAeGFscT0wXOVjr8Gp+Ltfk7mW5njKFaabQ+8yPpIjsnVJy05gEJWYLoZaDS0wIynVC4FiWHIL9ww9fBkir6u2UUXkaDF4GTlM4SUUs1HQ2gh9Q6N7ecDn3QLHV5wwmwZhQ5Fmwa6GYyl6AoFKdgGYwypXGH6PJ1Kx19fmdvGcyPxklNNhWBAWNMbJhl4Gc8YuOqUTTWNJRKy6AlbRMMWkaC1+DeAc+3tgX+G8eeh70g4+TLYunDF4JEro4wlMtMzIXAO3DtiZZkzhJRSTUtDaCFehMb285cdOqVyBZtLT93E33/vaXKF3KzzdC5xA2Tu8dddwQDD8Sx/+92nyLubfURgVXeYFRGLVN5mTW9XxetHpUr37/SErdqr5X75ffjuX4JYEO6DxCjs+gRw9YJBdMmOTVx/z7NAftY1oUt21BaaSil/aQgtps6hUS/pXIHJVI5EJs/xG1Zy1XmVz9MpHn9tjCGeKTCSyJAruOED9HUFWdMbJlcwpAuG979u+4LhUywsqOr6zoJ/iEnY9Q9OAIW6nNtCXZADHr15wRA6bdtqrsK5NjQ4meIIrY5TqiVpCLUQ2zZMZfLEUjlyhdkdrsudp1O0fkWUFyeSTKXz0xtNAYIBYV1fhF63wWgw4BwXcevDB8o+VsgKsCIaojcSxFpq8IBT9ZYYhlwaYi9CZE6nhWAXxA4t+jCnbVutoaNUi9MQagHZvM33njjE9f/9DAfcTaabBrq54pxtiy6X7R9NkMkXGI7PXOjvCgXojTjXj3ois6/bdIUCHI7NvrjfHQ6yMhoiGq7yGk8lxkBy1JkBFaveVhzlLMEVZ0IA+TSsWL+851JKtQQNoSZVsA2JbJ5EJs99Tw/zie8/TSyVozgB2T+a4BPff5qrf+PYskFUrsdbd9iiKxhg86oeLjllE7c+fIAXJxLEMwVyBZuQFaA3YrGh36mG640EWdkdqr7AYCHZhDP7Kcw5JO/ky5xrQDmcGVA+DXbOuV0p1fY0hHxU2uVgQ3+Uy87YwilHryZbsMnm7ekzfW59+ACJbJ6AyMz1F2NIZPLzls6S2Ty3PXyAr8/p8faus4/mtdtn93j75eEYe16cICBOYUKuYDOasPntkwfYtKqbUD1a8tgFJ3wy8fJf33oWcLVzDSh2yJkBVVEdp5RqDxpCPrBtw91PHuajdz5FMOA0FX1pIsXH7nyKq847Zt7M5lAshW0bAiUBIgKFgpleOsu7p5rW0uPt0QOTrOoOkcg6M6GwFaCvK8ieF2P1CaB0zGk4utgJrVvP0tBRqkNpCDWAMYZEtkDS7d2WK9h89r69BITppa5iu51yRQHrV0QZT2Yx9kzHH2PACghH9HVx3zPDfPH+5zk4XtuppodiKQZ6wqzpCxAMCCKCMWb5R0sUchAfcvZVKaXUAjSEPJTJF0hkCvz3k4f5j5/O7lZQLJsuVa4oAOD9W/bRPfIZ1ttDHGQtny9cxH32SUTDFuPJLB/59i8Ap8fbBccfyeVnbmVNFT3eNvZ3M57M0BWamfWkcgU2DnQv8F0LqKLdDmjjUaXUDA2hOrJtp1NBMlsglS2Qt+2K3Qp6wkHSOXt6AylAOmdPdzkoiu6/h7OevY5kj8XhZB9rCxNcHvgeT8vLeCnTRzzjhNYZ21bz7p1Hs7WKFjvd4SCresL86Xkvn9Vlu9j49Mqd22r/w+fSkBhatN1OaePRvq4QY+7rcRVoECnVgTSElsG2Del8gXTOJp0rkCkpJiia262g+J89xpB3Q6tcl4OilY9+FhMI0xXppjvSw79Ons3XEydi48xejj2yjytfu40TN/YvOt5wMMDqnsh0qfW5x67jozgNUA+OJ9noHgFR01Hjtj1Tdl0FbTyq2pIxkI07y9CJIYgPQ2oUfuPjfo+s6WkI1SBXcK7npHM2qVxhVgXbXMWGoXtenCBsCat7I/SEi//xBphK53n/67ZX7HJQFIodIBZaxxcnT+fLU6eQMmEANgdGeOebdpY91XRus9LfO20TF56wfl7DT3CCqKbQKZWagNTY4oUHJbTxqGo5dt75RSs+5FR6FoNm+uNh5/Ny10A1hBalIVRBxp3hZPM22YJNLm9jV3n2UukSXCQYIFewGYplWLeC6WW4I1dEF+xyAE7F283mjfzb4dcwZvcCsCqQ4L09/8PvrH2Bse2/s+Bzr+gKMpHK8i/3PMe6vq6lh81cmSlIjpU952cx2nhUNZVsEhKDzswlMTQ7VOLDzmm+qTEw1f+ihVjQswZ66/Tvrc15FkIi8iXgImDIGHO8e9sq4DZgK7APuNgYM+7VGGqRL9gkcwWSmQLpXKHqwCmndAluoDvM0FQag2E0niHQJ2WX3UoZY9j17Ihb8fZaAKKS5fLeh3l39F76mGLk1eV/wyo+d08kSDAgdIWEZDbPDbv2Li+EjHGW3NIT8zec1kAbj6qGMLbzi1JiTrjEB2fPZrKJ2h431AO9a6FnHfSshd4jSj5f53wcXQUByznUTi3Ky5nQTcC/Al8pue0a4IfGmOtE5Br386s9HMOCsnmbZDZPIlsgkyvU7XFLK9+cvmxdjCezZPI2q3siC3an3nNwght37eUXh6YAp+Ltoq02f2H/OxuST5Pr28TIydeQ2nJe2e8/HEuxqjuMVbLPJxqyll52Xcg74ZOZrGnZrRJtPKqWLZ+uMHMpCZrkiLNRumoC3aud2UvPWvf9nI9710K417M/VqfyLISMMbtEZOucm98CnOt+fDNwLw0OoXSuQCKTJ+lu0PTC+hVRRhOZ6WKEYsPP1T0RPvX2E8t+z/7RBJ//0fM8+KvR6dtKK95sfp0DizzvymiIrat7GI5n6LaWWXadSzmbTbPxBcutl0Ibj6qyikfdl17cT8z5OD4EmVhtjxvsmgmRnnUzQVP6cfdqnbn4pNHXhI4wxhwCMMYcEpGK60MicgVwBcDmzUs//rowXTadJ5UtULDr+x9qOZec4iw5LVb5BjAaz3Dzj/fz3SdmerzVUvEGzqbVtX0RusNB3vPaly297LqQc0InHVvS9R6lKirkyi+Hzbq4PwyFhUv854mumr8cNmupbJ0ze6nmVF/lC6lU3VWXB3dmQt8puSY0YYzpL/n6uDFmYLHH2bFjh9m9e3dNz53JFxieypDNezPbWUyxQq1S5VstPd4W0h12zgIqbctT7ElXVdl1PusET2ZKg0fVzhjnZ6fc0ljp56kaL/1a4QrLYqW3rXHu16ysEAxs0fRbRKNnQoMist6dBa0Hhrx6ooJtfAsgqHy+T75gc+cTh7j5wdk93v7A7fFWbc+2gAire8O1lV0b4/ymWcg577MJ52wfpcqx85AYKT9zmf58qPafocjKkqWx0llMyfJYV7/OXjpEo0PoDuAy4Dr3/bca/PxVi+6/h5WPfpZQ7AC5FZuYPPmPKxYDVMMYw5fu38c3HjlIxg3HkCVcvGMTl5yycI+3uSIhi3V9kcUDq5B31s/zaTd8ll7VptpMNlFy7aVC5VhyDKhhpSRgzVxrmXVBv3SpbK1zjUYpl5cl2rfgFCGsEZGDwN/ghM/XRORdwAvA27x6/uWI7r+HNbs+hAmEsSP9BBNDrNn1IUZ2fnxJQbTn4ASf+sEzvDA+s5mtxz0e+4SjVtYUQH1dIdb0hhderssmnYq2WstPVeuzC86+lvjwwvtfcjX+bIR7y1/QLw2a6ABIHbqvq47iZXXcpRW+9DqvnrNeiq1yTMipKDOhbsg5t1cTQsVZ1Atjaf4h89vck5wpCugJW6zpjRAJBhY8SnsucZffVsxdfjPGXV7LOOGTS9SllFo1oVxq9kxlXhXZsLN8ZmooTZaAUxk2b8YyZ6ksvMSmts1k3wPuuVUvOSf66rlVTUE7JpQRih3AjsyuTDPBKKHYYkXSTgDZ/3MdH0m+gW+kXkPB7fHWH0jSu2IV3eGZl3xu1+y57XaKxQzBQIB1fSG6TBriE85a/fRb/fY3KZ8Y22mBtNjF/cxUbY8bis6uFCt3cb97FQQ64L+BfQ84J/gGQs41qcSo8zlXaxD5rDV++oxxLn4aA5iZ98WvzVq3dpepcnkkl519m/MNJY9jI8ZpJooIRiwQi1zfBoKJYUx4piO15FPkViy8qz+ZzfP1H/6MmyY+ONPjLTjOX/b+gK3553mffGTm8YxNLpdlc18QycZ55PkRvrTrV1gB4ahIgHQ8yU0/HKKvcDQXvGI11lS27vt1VAPkMzPlx3NnLqUX++1arteJEx6lS2Pllsq0NHnGozc7ARRyr0eFupwj5R+9WUPIZ60RQoUsTCw+CykluTzBxNIqv+Lbf5uBhz8Ndg4TjCKFNGLnmXrFpViJYkHfTCDkC/Dtp8a5+WcjjKdOBdweb327uLj7EcJSIJ+cYKAwTMQ2dIcMuVyevA2XvXILweQgP/zZ06yRLBHLAhsIOg1T//ux53jTdt2l3XSKbYzm7dafU0WWnqjtca3InL0uZS7ud6/RjZW1ir3kzIBKBbucI+WVr1ojhBoss+F0xvlz+n5xC8HEIfI965k67lKyR5xIIDezJGKM4b59KW7YHeNgzPlNtktyvDP6I97d9xC9AXcmlksRWLGeK49dz51PHGI4nmVtb4Q3nbCeV21y/mEMxTP0ukcsiAiWJYSsgHaX9kMh57R9WezifqHGX3K6+he/uB9ZobMXL6w4ylmCC5VU5uXTsGK9f2NSgIZQRZkNp5PZcHrFr+85nOHffjrJk8NO0AQELjymmz856jm2P3Enxg5BoAvyacTOMXXcpbxqw8rp0JlrXW+EiWSWaNhp8SMipHN57S5dT8UzXxa7uF9zaXKwzJ6XuS1i1kJw8dNulUdOvsy5BpTDmQHl02DnnNuVrzSEarRvIscND09y/wvp6dvO2tzFlTtWcvRACDiV8a75s6iFAg3gohPW89WH9pO3bayARTqX1+7StbALzpkv85bGSva/VDrzZSGRvtlLY+UaW0b7tTS52W09C7jarY475MyAtDquKWgIVWkkWeDLj8T4zjOJ6R5vr1gb4k9O6eek9bN/w11sFjVXyApw/vFHsro3ot2ly8kmyzSyLG1uOeQE0FLOfOkpKUcuVpCVzmBCOhNtG1vP0tBpQhpCi0hmbW75+RS3PhEnnXfSZ0OfxZWnrOTcrdGqe7yV2nNgkjufOMRQPMORfV38r9M3c+SKaOd1lza201Ns3s79ORf3s/HaHnfemS+lS2RHzD7zRSnlKw2hCvK24dtPJ/jyozHG085v2Cu7Arzz5BW8+dd6CFlLu3i858AkN/94P8EA9HeFmMrk+H/3PIcgtQVQs2+8m3Xmy+Cc5bFiW5g6n/lS/LyktL4pNPvflVI+0hCao1zFW8QS3n58L7/3qj56wstb+7/ziUMELeiJhAiIuIfP5bl1t1OCfuvuAxyeTHHkQstxfm68q3Tmy9zZTM1nvkTmlCK3yZkvuklSqQVpCJXYczjDZx+e5OdDMxVvbzymh3e9egVreuqzdDMcz9AfdQKoKBK02D8S5/p7niVkCX1dIcYSGa6/51mugvlB5NXGu0K2/IyleHE/7m66tGs88iE6UOE45JLZTKSvPUuTdZOkUgvSEAL2T+T43IIVb/XR1xVmY3+UsWSWrsDMjCqTL5CzDX2W8BrzFOfHf8Aae4RhWc2PHngjp237g9kPVOvGO2OcmUnZo5BLQqbWjZWB0Jylsbk7+FvgzBev6SZJpRbU0SFUrHi785kEhZKKtz8+pZ+T19dvT0dAhFU9YaKhIJecspnr73kWyBMJWk4AFQwhK8CrzS+4JHUreSwSdNNvJvmtya/Cvm2zf2su3XhnjNPyJZtwmkw+fkv545H1zBd/6CZJpRbUkSHkRcVbJeGgxeqeMEF35nPattVcBfNKsW/dfYDzR35AHousOAGYsYP0SgF+/C9Oe/7iDCafgdiLTnXZ3I7JP/rkwgOqdObL3CoyPfOlPnSTpFIL6qgQqlTxdvlJK3jLsUuveKukNxKivzuEMPtxT9vaz2nr7JJ9Ls+wsW8/q4b2AULQFLAoEMA4G/dHR+CH1y7+hOGeOe1gjpgfNN2rdGNlI+kmSaUW1BEhZIxh1/40n3t40pOKt1KST2ElR+g3E0QzY3OWxtyL+8nReTOYDYs9cM9a4sFVPDXVxWSgn5i1imGzgmGzkt8840ROPPaY5itNVg7dJKlURW0fQnsGM3z2p3WoeDM2gcwkVnLYfRvBSs28D7rvAzVvrCw58wVg+GnnQn4w6nYAMLDzati2k//7tccYy2foCs38taVzeW56Gj79Kg0gpVTradsQ2juW5bpdI/xofxUVb4UMVnLUDRM3ZFIjTsAUP06NIDWd+YJ7YmW5i/slS2Vzz3yZ3th4CFbO3th4eDJF35yTVSNBSzttK6VaVluG0GceGuVT949QMIZ+4pwxMMVl2zNs75rEOjCE9cvSWcwIVmaypsc3gTD57rUUutdQiDrvgyuOoHtg/UzQ9CzxzJcFlm6OXBllLDF7JpTJF7TTtlKqZbVuCBVykBgp09hyiN8bOcRFocMcGRgnQg5SwONVPmxkJYXomlkBU+he6962jkL3Guxw6ZkvTvl16bHdXrlkx6ay5d3aaVsp1apaI4SSI3Dv381uEZMaq3j3AWBgTq2BCQSdIIm6oeKGSz5aOqNZ7ZxsWaVgIMDq3jBhqzGNMCuVd3dU01OlVFsRY2o4vMsnO46yzO4rFjjieu6ZLz1ryUbXMBkYmA4bO7KyrqXJISvAmt7I9P4fpZSaxQrBwBbdzb2I1pgJhaKw7bwyp1W6H5c586WQy5OOV9clIPLiT2o6hC4ctFjTG8HSbgFKKbUsrRFCA0fDG//Rk4eOvPgTBh7+NCYQwoRXYKVGGXj404zz52WDKBKyWNMTmdWAVFUg4sw+A5ZziFwg6L4FwHa7PRjbaT2Ecd4XX1cJuG+Wc//SGfv0/d3vLZayz5vVl5nlLzjzr/C1it9Ty+PX+tjLvK9SLaI1QshDfb+4BRMIOftyAIJRTN65fW4IRcNBVveE53VA6DgiTphYIaeJqVUMl1BJ4OgypWeMmQliO+8U6dg5J9jt/PxwL37PrODWQFPNoeNDKJg4hAmvmHNjF8HE7C7H3eEgq1o1gKZDI+yGheW+BWfejPsfWPGQuYDlXkMTd3YiMzMbnQX6S2Tm7yBgOWcx1aoYWLPeCiUfu6GmlMc6PoTyPeuxUqMzMyGAfJp8z0yX4xVdYVZGW+AwtdKwCUacmYoVdt4WDQ6r9Q6MU0sXCEAgDCxwzEaxQ3u5oCrk3FmXrbMqtSwdH0JTx13qXBPKM93lWOwcU8ddiiAM9ITpacAeoKrsewAe/QpMvQQrN8Pp74VjXu/+ZuyGiM5SVL2IuL/ILPLLSWGhGZX7pkGlKvDlf1cR2QdMAQUgb4zZ4cc4ADIbTmecP59XHVfYdCbrGrgHaBYRdyYTnrnusncX3P9Pzj4mKwKHHof/vBzWHAuv/whsP7/x41QKnGuC1iL/lVRc/svNhJbOqjqSn7/i/7oxZsTH55+W2XD6rCKEcNBiXSNLsK2gMwsrvoXKnOXz0L854WPyzllCCEgQxvbC9z4AfFKDSDWvapb/YKbacVbV5NwqyNLPqfz1ShWUGnRNpUnWmZqH5wUIwbATNNPXayKL/xYJMLEfugZg7FeAzJQtm4Lzj/vB670PoWfudp5nYj/0b4Ezr9LgU/VVXFrG4xUIUymgygVdSXhVFXT27O0GakF+hZABfiAiBrjBGHPj3DuIyBXAFQCbNx7VkEH1dYXpr3cBQsByNtOGup23agKnnP4tMDUIhaz7jxTnB90KO48/8UL9xlzOM3c7M65A2AnDqUGdganWNR12ym9+beY4yxjzauBC4L0isnPuHYwxNxpjdhhjdqxdvcrzAfV31zGArBD0rIb+zbDqaOg7ErpWLD2AwJl12G4A2QW3fNY4nSNyKee5ip65G266CP75BOf9M3cv+4/Eg9c7ARTudv4Bh7tnZmBKKbVEvoSQMeYl9/0QcDtwqh/jABCENb0R+iLLDCAr6ATNyg0wsAWiA87SW71sPx8u/CSsfhlQcPbr9G1wihbsrBNSMDNjmRqcPWNZbhBN7J/fHqkRMzClVFtreAiJSI+I9BU/Bt4A/LzR4wCnCekRK7uIhpY4Q7GCMzOega0V+9jVzfbz4Y8fgEtug407ABv6jnDCqbgk5tWMpX+LM+MqNXcGppRSNfLjmtARwO3iXLQLAv9hjLmr0YOIhoOs6g4vrQdcKApdKyGyQGdvL20/v/J1mGIBQ6l6zFjOvMqZUWXdx8ulZs/A5tIiBqVUFRoeQsaYvcCJjX7eUkvqgCACkRVO+NRzma3eigUM4e6Z2+oxY9l+PvBJN1hecB6vUrBoEYNSqkodVaK9pA4IgQB09TvhE2iBappaZyy1WGgGVqp0SRCc91kaU0aulGopHRNCzimoEcJWlZfBghFnuS2y0ruO0F4sWdUyY/GKV0uCSqm20xEh1B0OMlDN9R8R6F4F4b7llVNXw8slq2pnLF7xaklQKdV22v7QlxVdYVZXcwhduMf5zzM64H0AQXvvuynuacomnQ212WT9lgSVUm2lbUNIEFb1RBYvQLBCzmbSFesbEz5F7bzvprinqe8ISE/MLyNXSilX2y7HdYUWKSKwQs6sp2vFwvfzSrsvWfm9JKiUagltOxOqyAo6m0oHtngTQNW2zNElK6WUat+Z0DyBAHSvdvb61Ku77dzqtq3nwOP/UV2xQTNUsSmllM/EtMDZGjtOOsHs/u/bl/4AXSudAKpnqXVpdVtxP87kC9C1CvrWzdwvm3SuiVz+nfo9t1KqVeh5Doto75lQpNdtJBqp/2OX25Bp5yEbA0pCqF2KDZRSygPtF0LF9jrRfqf4wCvlNmRaEcinZ9/WTsUGSilVZ+1TmBCwnI2mA1uhd623AQTlu0pH+yEQ1GIDpZSqUuuHUMByQmfV0U4INaq/W7nqNisEZ/+F7o9RSqkqte5ynIhzvSc64N9Z7qEeGHvOOax8zTHwur9zA+dqf8ajlFItpjVDKNztHGvt9ZJbJaWVcWuOdZblsnF/xqKUUi2stZbjAgFniWvFUf4FELR33zellGqg1pkJda1w9/o0wZk+elSBUkrVRWvMhKyQ02qnGQIIylfGaSm2UkrVrDVCSJpsmG5lXCI+xd7hOPsODTM4EePxzZf5PTKllGopTfa/e4vYfj6Pn/B/eDrRTbQQYzK4mk+HruBPd6/h3qeH/B6dUkq1jNa5JtRkrntuE0M9f0t3eOYlDGXz3LBrL+ceu26B71RKKVWkM6ElOjCeJDrnzKJoyOLgeNKnESmlVOvREFqiTQPdpHKFWbelcgU2DnRX+A6llFJzaQgt0ZU7t5ErGJLZPMY473MFw5U7t9XvSao9IE8ppVqUhtASnXvsOj765leyrq+LyVSOdX1dfPTNr6zf9aBiV4apwdkH5GkQKaXaiBYmLMO5x67zrgih3HlFWfd2bYiqlGoTOhNqVhP7nS4MpbQrg1KqzfgSQiJygYj8UkSeE5Fr/BhD09OuDEqpDtDwEBIRC/gMcCFwHHCpiBzX6HE0vXLnFekBeUqpNuPHTOhU4DljzF5jTBa4FXiLD+NobtvPdw7E0wPylFJtzI/ChA3AgZLPDwKn+TCO5rf9fA0dpVRb82MmVO4YVDPvTiJXiMhuEdk9PDzcgGEppZRqND9C6CCwqeTzjcBLc+9kjLnRGLPDGLNj7dq1DRucUkqpxvEjhB4GjhGRo0UkDFwC3OHDOJRSSvms4deEjDF5EXkf8H3AAr5kjHmy0eNQSinlP186Jhhjvgt814/nVkop1Ty0Y4JSSinfaAgppZTyjYaQUkop32gIKaWU8o2GkFJKKd9oCCmllPKNhpBSSinfiDHz2rY1HREZBvZ79PBrgBGPHns5dFy10XHVphnH1YxjguWNa8QYc0E9B9NuWiKEvCQiu40xO/wex1w6rtrouGrTjONqxjFB846rXehynFJKKd9oCCmllPKNhhDc6PcAKtBx1UbHVZtmHFczjtmWolUAAAY1SURBVAmad1xtoeOvCSmllPKPzoSUUkr5RkNIKaWUbzomhETkAhH5pYg8JyLXlPl6RERuc7/+kIhsbcCYNonI/4jIUyLypIhcVeY+54rIpIg85r592Otxuc+7T0SecJ9zd5mvi4j8P/f12iMir27AmH6t5HV4TERiIvL+OfdpyOslIl8SkSER+XnJbatE5G4RedZ9P1Dhey9z7/OsiFzWgHH9o4g87f493S4i/RW+d8G/8zqP6VoRebHk7+mNFb53wX+3HozrtpIx7RORxyp8ryevVUcyxrT9G84Jrr8CtgFh4HHguDn3+RPgc+7HlwC3NWBc64FXux/3Ac+UGde5wHd8eM32AWsW+Pobge8BApwOPOTD3+lhYIsfrxewE3g18POS2/4BuMb9+BrgE2W+bxWw130/4H484PG43gAE3Y8/UW5c1fyd13lM1wIfqOLveMF/t/Ue15yv/xPw4Ua+Vp341ikzoVOB54wxe40xWeBW4C1z7vMW4Gb3428ArxMR8XJQxphDxphH3I+ngKeADV4+Zx29BfiKcfwE6BeR9Q18/tcBvzLGeNVJY0HGmF3A2JybS3+GbgZ+q8y3/gZwtzFmzBgzDtwN1G1HfblxGWN+YIzJu5/+BNhYr+db6piqVM2/W0/G5f7bvxi4pV7Pp8rrlBDaABwo+fwg8/+zn76P+w92EljdkNEB7vLfycBDZb58hog8LiLfE5FXNmhIBviBiPxMRK4o8/VqXlMvXULl/yD8eL0AjjDGHALnFwxgXZn7+P26/SHODLacxf7O6+197hLhlyosXfr5Wp0DDBpjnq3w9Ua/Vm2rU0Ko3Ixmbm16NffxhIj0Av8JvN8YE5vz5UdwlpxOBP4F+K9GjAk4yxjzauBC4L0isnPO1/18vcLAm4Gvl/myX69Xtfx83T4E5IF/r3CXxf7O6+mzwMuAk4BDOEtfc/n2WgGXsvAsqJGvVVvrlBA6CGwq+Xwj8FKl+4hIEFjJ0pYQaiIiIZwA+ndjzDfnft0YEzPGxN2PvwuERGSN1+Myxrzkvh8CbsdZGilVzWvqlQuBR4wxg3O/4Nfr5RosLkm674fK3MeX180tgLgI+H3jXtSYq4q/87oxxgwaYwrGGBv4fIXn8uu1CgK/DdxW6T6NfK3aXaeE0MPAMSJytPtb9CXAHXPucwdQrFT6XeCeSv9Y68Vdd/4i8JQx5lMV7nNk8dqUiJyK83c26vG4ekSkr/gxzoXtn8+52x3AO9wqudOByeJSVANU/C3Vj9erROnP0GXAt8rc5/vAG0RkwF2CeoN7m2dE5ALgauDNxphkhftU83dezzGVXj98a4XnqubfrRdeDzxtjDlY7ouNfq3ant+VEY16w6nmegan2uZD7m0fxfmHCdCFs7zzHPBTYFsDxnQ2zvLCHuAx9+2NwHuA97j3eR/wJE5l0E+AMxswrm3u8z3uPnfx9SodlwCfcV/PJ4AdDfp77MYJlZUltzX89cIJwUNADuc39nfhXEP8IfCs+36Ve98dwBdKvvcP3Z+z54B3NmBcz+FcWyn+jBWrQI8CvrvQ37mHY/qq+3OzBydY1s8dk/v5vH+3Xo7Lvf2m4s9TyX0b8lp14pu27VFKKeWbTlmOU0op1YQ0hJRSSvlGQ0gppZRvNISUUkr5RkNIKaWUbzSEVEdwuzZ/YM5tW0s7KC/wvQ96NzKlOpuGkFKLMMac6fcYlGpXGkKqbYnIh9yzaP4b+DX3tte4zU1/DLy35L6Xi8i3ROQu93v+puRr8caPXqnOoCGk2pKIvAanzcvJOH3ATnG/9GXgz4wxZ5T5tlOB38dpqvk2EdnRiLEq1ck0hFS7Oge43RiTNE5n8juAHqDfGHOfe5+vzvmeu40xo8aYFPBNnLZKSikPaQipdja3J1WizG0L3V97WinlMQ0h1a52AW8Vkajb8fg33dsnRaQ4w/n9Od9zvoisEpEozqmoDzRorEp1rKDfA1DKC8aYR0TkNpyu0fuBH7lfeifwJRFJMv8IhftxluheDvyHMWZ3o8arVKfSLtpK4VTH4RxH8T6/x6JUJ9HlOKWUUr7RmZBSSinf6ExIKaWUbzSElFJK+UZDSCmllG80hJRSSvlGQ0gppZRv/n9NhNstQ4NYuQAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"savings['age'] = np.where(savings.pop15 > 35, 'young', 'old')\n",
"sns.lmplot('ddpi','sr',data=savings, hue='age')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Can facet this also:"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/anaconda/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"text/plain": [
""
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl03Od93/v3MztWEuAKLiBIa7NkWRu1klHoJa0TO7EdL/ImS6JupfYkN25vbm/SnERNlfae5Jw2rm5zeyunoiSvkmzZliI7bhxLskJSokjtonaTIMENINbZ5zfz+z33j1k4AEFysAxmBvN5naND8MfBzAOR/OHDZ77P92ustYiIiIiISJ6v1gsQEREREaknCsgiIiIiImUUkEVEREREyiggi4iIiIiUUUAWERERESmjgCwiIiIiUkYBWWQBGGOeNsZsnub6rcaYv6nFmkRERGR6CsgiIiIiImUUkGXRMMb82BjzgjFmvzHmjrLrtxtj3ins4v5tccfWGLPCGPOoMWZv4b8t87CGjxhjXjLGvGaM2WGMCU/zmNsK6/klMOfXFBGZiVrfKwv3yR+V/fw3jDE/LHz8xcL983VjzF+VPSZe9vFnjTEPFD5+wBjz/xhjdhtjDhhjPlu47jPG/PfC1/iEMeanxV8TqUSg1gsQmUfbrbWjxpgWYK8x5lEgDPwZcCUQA54EXik8/h7g69bancaYXuB/Ae8vf0JjzIXAw2d4vW3W2vGyx0aAB4CPWGvfMcZ8E/hXwH8te0wP8B+Aq4AJ4CngpTl91SIiM1PTe2Xhuf9fY8wKa+1J4DbgfmPMGuCvyN8fx4B/MMZ8ylr743N8PT3AVuAi4HHgB8DvAn3ApcBK4E1gxzmeR6REAVkWkz8wxny68PF64HxgNfBLa+0ogDHm+8AFhcd8FLjYGFP8/E5jTIe1Nla8YK19G7i8wte/EDhorX2n8PMHgd+jLCAD1wJPF74pYIx5uGw9IiILoab3SmutNcZ8C/iKMeZ+4Hrgq8DHmXx//A5wI3CugPxja60HvGGMWVW4thX4fuH6CWPMU5WsTaRIAVkWBWPMNvI38euttUljzNNABDBn+TRf4fGpszzvTHZFzvZa5WyFjxMRmVd1cq8EuB/4OyBNPsjmTFkCn0b5fTMy5dcy5UuZ8qPIrKgGWRaLJcBY4YZ/EXBd4frzwK8bY7qMMQHgM2Wf8w/A7xd/Yow5bffDWvu2tfbyM/w39Yb/FtBnjDmv8PObgV9OecweYJsxZpkxJgh8brZfsIjILNTDvRJr7THgGPCn5EvTIH9//HVjzHJjjB/4IqfuoYPGmPcbY3zAp6c+3zR2Ap8p1CKvArZV8DkiJQrIslj8DAgYY14F/gJ4DsBaexT4v8nfeP8ReIN87S/AHwCbjTGvGmPeAP7lXBZgrU2Tr6X7vjHmNcAD/seUxxwH/hx4trCeF+fymiIiM1Tze2WZ7wAD1to3Cms4Dvw78mczXgFetNY+VnjsHwNPkK9fPl7Bcz8KHAFeB+4l/3VNnPUzRMoYa/Vuryxuxph2a228sCvyI2CHtfZH5/o8EZFmstD3ykKXjJestfdV6fmLX88y8jvkW6y1J6rxWrL4qAZZmsGfG2M+Sr5u7R8494EPEZFmtGD3SmPMC0AC+MNqvQbwhDFmKRAC/kLhWGZCO8giIiIiImVUgywiIiIiUkYBWURERESkTEPUIH/sYx+zP/vZz2q9DBGRWppzX1fdS0VEKruXNsQO8vDwcK2XICLS8HQvFRGpTEMEZBERERGRhaKALCIiIiJSRgFZRERERKSMArKIiIiISBkFZBERERGRMgrIIiIiIiJlFJBFRERERMooIIuIiIiIlFFAFhEREREpo4AsIiIiIlJGAVlEREREpIwCsojIArDW1noJIiJSIQVkEZEqy7keR8dTtV6GiIhUKFDrBYiILGbprMtQNEPO82q9FBERqZACsohIlcTSWYbjjsorREQajAKyiEgVjCYcxpNOrZchIiKzoIAsIjKPPM9yMp4hkcnVeikiIjJLCsgiIvMk63oMRtM4OdUbi4g0MgVkEZF5kM66DEbTuJ7qjUVEGp0CsojIHOkwnojI4qKALCIyByPxDBOpbK2XISIi80gBWURkFjzPMhTLkHR0GE9EZLGp2iQ9Y0zEGPO8MeYVY8x+Y8x/KFx/wBhz0BjzcuG/y6u1BhGRasi6HscmUgrHIiKLVDV3kDPAh621cWNMENhpjPn7wq/9W2vtD6r42iIiVaHDeCIii1/VArLNn1aJF34aLPyn7ygi0rCi6SwjOownIrLoVa3EAsAY4zfGvAwMAT+31u4p/NJ/Msa8aoz5ujEmfIbPvcMYs88Ys+/kyZPVXKaIyDmNxDMMxzINF451LxURmbmqBmRrrWutvRxYB1xjjPkA8O+Ai4CrgW7gj87wud+w1m621m5esWJFNZcpInJGnmc5MZFu2E4VupeKiMxcVQNykbV2HHga+Ji19rjNywD3A9csxBpERGYq63ocHddhPBGRZlPNLhYrjDFLCx+3AB8F3jLG9BSuGeBTwOvVWoOIyGylHJdj4ymyrsZGi4g0m2p2segBHjTG+MkH8UestU8YY540xqwADPAy8C+ruAYRkRnTYTwRkeZWzS4WrwJXTHP9w9V6TRGRuRqOZ4g2aL2xiIjMD03SExEhfxhvMJYm5bi1XoqIiNSYArKIND0n5zEYTaveWEREAAVkEWlyKSc/Gc9TvbGIiBQoIItI05pIZhlJZGq9DBERqTMKyCLSdKy1nIxniKfV31hERE6ngCwiTSXnegzGMmSyOownIiLTU0AWkaaRzubrjV1P9cYiInJmCsgi0hQ0/ENERCqlgCwii5q1lpGEo+EfIiJSMQVkEVm0XM8yGE2TVr2xiIjMgAKyiCxKGv4hIiKzpYAsIouOhn+IiMhcKCCLyKKiw3giIjJXCsgismiMJhzGk06tlyEiIg1OAVlEGp61lpOxDPGMJuOJiMjcKSCLSENTpwoREZlvCsgi0rAyOZfBiQw5T50qRERk/iggi0hDSmRynIxl1KlCRETmnQKyiDSc8aTDaEKH8UREpDoUkEWkYegwnoiILAQFZBFpCDnXYzCWIaPDeCIiUmUKyCJS99JZl6GoDuOJiMjCUEAWkboWLxzG02Q8ERFZKArIIlK3xhIOY5qMJyIiC0wBWUTqjg7jiYhILSkgi0hdybkeJ6JpnJzqjUVEpDYUkEWkbugwnoiI1ANftZ7YGBMxxjxvjHnFGLPfGPMfCtc3GmP2GGPeNcY8bIwJVWsNItI4YuksxyfSCsciIlJzVQvIQAb4sLX2MuBy4GPGmOuAvwK+bq09HxgDbq/iGkSkAYwmHHWqEBGRulG1gGzz4oWfBgv/WeDDwA8K1x8EPlWtNYhIffM8y4mJNOPqVCEiInWkmjvIGGP8xpiXgSHg58CvgHFrbfFo+hFgbTXXICL1Ket6HJtIkXTUqUJEROpLVQOytda11l4OrAOuAd4/3cOm+1xjzB3GmH3GmH0nT56s5jJFZIGlsy7HxlPqVLEAdC8VEZm5qgbkImvtOPA0cB2w1BhT7J6xDjh2hs/5hrV2s7V284oVKxZimSKyAKKFw3iup3rjhaB7qYjIzFWzi8UKY8zSwsctwEeBN4GngM8WHnYL8Fi11iAi9WUknmFYh/FERKTOVbMPcg/woDHGTz6IP2KtfcIY8wbwkDHmPwIvAfdVcQ0iUgc8zzIUy6jeWEREGkLVArK19lXgimmuHyBfjywiTcDJeQxG02Rd1RuLiEhj0CQ9EamalOMyFFO9sYiINBYFZBGpiolUltGEo3pjERFpOArIIjKvrLWMJByiqWytlyIiIjIrCsgiMm9czzIUS5Ny3FovRUREZNYUkEVkXugwnoiILBYKyCIyZ0knx1A0g6d6YxERWQQUkEVkTiaSWUYSmVovQ0REZN4oIIvIrFhrGY47xNI6jCciIouLArKIzJjrWQajadJZHcYTEZHFRwFZRGYkk3MZimZ0GE9ERBYtBWQRqZgO44mISDNQQBaRiownHUYTTq2XISIiUnW+Wi9AROqbtfnhHwrHc5NzPd4ZjNV6GSIiUgHtIIvIGbme5UQ0TUaH8WbN9Sy/eGuIB3f3k3Utz/xf22gN6dYrIlLPdJcWkWllci6DExlyng7jzYa1ln96b5j7d/VzaCQJgM/AngOjfOiilTVenYiInI0CsoicJpHJMRTLYHUYb8asteztH2PHroO8MxgvXf/QhSv4009czPtWtNdwdSIiUgkFZBGZZCzhMJZUvfFsvHpknPt29vPa0YnStes2dbN9y0bOW9nOJoVjEZGGoIAsIkB+5/NkLEM8k6v1UhrO2ydi7Nh1kL39Y6VrV/QuZfuWPi5Zs6SGKxMRkdlQQBYRcq7HYCyjw3gzdHA4wf27+tn53nDp2sU9HWzfupEre7tquDIREZkLBWSRJpfO5ifj6TBe5Y6Op3hwdz+/eHOIYpX2phVt3L5lI9dt6sYYU9P1iYjI3CggizSxeCbHSR3Gq9jJWIZvPXeIv3/9BK6X/3+2rquF227o49cvXIFPwVhEpG7FMznaw5VFXwVkkSY1mnAY12G8iowlHb73/GEee/kYWTcfjFd2hLnl+g38s0tW4/cpGIuI1Csn5zGSyJByXNorPCytgCzSZDzPcjKeIaHDeOcUT+d4eN8Aj754hHQ2X4LS1RrkK9dt4OOX9hAKaBipiEi98jzLWNIhms7N+J1SBWSRJpJzPU5E0zg51RufTcpx+dFLR3lo70Cpq0dHJMAXrl7Pp65YS0vQX+MViojI2cTSWUYTTqkcbqYUkEWahA7jnZuT8/i7V4/x3T2HGUtmAWgJ+vncVev47OZ1FdeuiYhIbWRyLiNxh/QcuzLpbi/SBGLpLMNxR4fxziDnevyv/YN867lDDMUyAIQCPj51+Rq+eHUvS1qDNV6hiIicjetZRhMOsXR2Xp5PAVlkkdNhvDPzrOWpt4Z4YPchjo6nAAj4DL91aQ9fvraXFR3hGq9QRETOJZrOMjaHcorpKCCLLFI6jHdm1lp2vTfC/bv7OTicAMBn4DcuXsVXr99Az5KWGq9QRETOJZ11GUk4VRlyVbWAbIxZD3wTWA14wDestfcYY/4c+BfAycJD/8Ra+9NqrUOkGWVdj0EdxjuNtZZ9h8bYsauft0/EStdvvGA5t93Qx4ZlbTVcnYiIVML1LCOJDPF09TaAqrmDnAP+0Fr7ojGmA3jBGPPzwq993Vr7n6v42iJNK511GYym5/WtpsXg9aMT3LfzIK8cmShdu3ZjN9u39HH+qo4arkxERCo1kcwylnTwqnympmoB2Vp7HDhe+DhmjHkTWFut1xORfB3WiA7jTfLuYIwdu/rZc3C0dO2ydUu4fetGPrB2SQ1XJiIilUpnXYbjmQV7Z3RBapCNMX3AFcAeYAvw+8aYrwL7yO8yj03zOXcAdwD09vYuxDJFGpa1luH4/J3eXQwOjSR4YPchfvnOydK1C1d1sH1rH5s3dGGaZCy07qUi0shyrsdowin1pF8opto7TcaYduCXwH+y1v7QGLMKGAYs8BdAj7V2+9meY/PmzXbfvn1VXadIo8q5HkOxzJx7Pi4Wx8ZTfPPZQ/zjm4MUq0w2Lm/jthv62HLespoG400Vjjg9gzkvXPdSEWkU1lomUlnGk9l5LafYtKK9ontpVXeQjTFB4FHgO9baHwJYawfLfv1vgSequQaRxUzDP04Zjmf49nOH+clrx0v112uWRrj1hj4+dOFK/L7m2DEWEWl0KSdfTpF1a/e9rZpdLAxwH/Cmtfavy673FOqTAT4NvF6tNYgsZuNJh9GE+htPJLN89/nDPPbKsVJt2sqOMDdft4F/fskqAn5fjVcoIiKVyBbKKeqhPWk1d5C3ADcDrxljXi5c+xPgi8aYy8mXWPQDd1ZxDSKLjvob58UzOX6w7wjff+EIqUJ5SVdrkC9d28tvf3ANoYCCsYhII7DWMp7MMp7K1s0h82p2sdjJ9DVz6nksMkuZXL6kopZvO9VaOuvyo5eO8tDeAWKFHpjt4QA3Xb2O371iHS0hf41XKCIilUpkcowmnLr7vqZJeiINotlbuDk5j5+8dpzv7DlcKi2JBH185sp13LR5Pe0R3c5ERBqFk8uXUySd+nw3VN9RROqctfmSimpODKpnrmf5hzcGeXB3P0OxDABBv+GTl6/hi9f00tUaqvEKRUSkUp5nGU9lmaijcorpKCCL1DEn5zEUa86R0Z61/PLtk9y/u58jYykA/D7Db35gNTdft4EVHeEar1BERGYinskxGncaovOSArJInUpkcpyMZao+TrPeWGt59sAI9+/q51cnE0D+MMNH3r+SW27oY+3SltouUEREZsTJeYwkMqScxunXr4AsUmestYwmHCZSzTcV78XDY+zYeZA3jsdK17aet5zbtvSxcXlbDVcmIiIz5XmWsaRDNJ2r63KK6Sggi9SRZp2K98axKPftOshLh8dL167u62L7lo1cuLqjhisTEZHZiKWzjCac0uCmRqOALFInmnEq3q+G4ty36yDPHRgtXbt0bSfbt27ksnVLa7gyERGZjUzOZSTuNPxGjwKySB1othZuh0eTPLi7n6fePlm6dsGqdrZv2cjVfV3kB3GKiEijcL18eWAsvTjKAxWQRWpsOJ4h2iT1xieiab717CH+1/4TFN9129Ddym1b+/i185YrGIuINKBoOstYA5dTTEcBWaRGPM8yFMvUbZP0+TSacPj2c4d44tXj5Ao30J4lEW65oY+PXLQSv0/BWESk0aSzLiMJh0yDl1NMRwFZpAayrseJiXTdjdacb9FUlof2DvCjl46SKfRyXt4e4ubrNvCbH1hNwO+r8QpFRGSmXM8ykljcA6wUkEUWWMpxGYqlF9VbUVMlMjkeffEI3993hESh7+WSliBfuraX3/lgD+Ggv8YrFBGR2ZhIZhlLOou+R78CssgCWuyH8TJZlx+/fIzvPX+YaGFnoS3s5/Ob1/OZK9fSGtItR0SkEaWzLsPxTNNMdtV3K5EFspgP42Vdj5++dpxvP3eYkYQDQCTg49NXruWmzevpbAnWeIUiIjIbOddjNOEQzyzecorpKCCLVNliPoznepZ/fHOQB3cf4kQ0DUDQb/jtD67hS9f20t0WqvEKRURkNqy1TKSyjCezi76cYjoKyCJV5OQ8BqOL7zCeZy3PvDPMA7v7OTyaBMBn4GMfWM3N121gVWekxisUEZHZSjo5RuLOovveNRMKyCJVknRyDEUzi+pf3tZa9hwcZceuft4bigNggA9dtJJbb9jAuq7W2i5QRERmLVsop0g0WTnFdBSQRapgPOkwWqjFXSxeGRjnf+48yP5j0dK1Le9bxm1b+ti0or2GKxMRkbmw1jKezDKeyi7aQ+QzpYAsMo88z3IynllU//p+60SU+3b288KhsdK1q3qXsn3rRt7f01nDlYmIyFwlMjlGE81dTjEdBWSRMk+/NcS9zxxgYCzJ+q5W7rxxE9suWlnR5y62euODwwl27DrIrvdGStcu7unk9q19XNHbVcOViYjIXDm5fDnFYjxAPh8UkEUKnn5riLse30/Qb1jaEmQoluaux/dzN5wzJCcyOU7GFke98dGxFA/s7ufJt4YofjXnrWhn+9Y+rt3YjTEaCy0i0qg8zzKeyjKhcoqzUkAWKbj3mQME/aY0zKI1FCDp5Lj3mQNnDcijCYfxZOPXGw9F03zzuUP87PUTFIf89Xa3cusNfdx4wXJ8CsYiIg0tnskxGnfIeYvjnc5qUkAWKRgYS7J0ykCLlqCfI2PJaR/vepahWJpUYZRyoxpNOHz3+cP83SvHyLr5ZLyqM8ytN/Tx0fevwu9TMBYRaWROzmMkkWn471cLSQFZpGB9VytDsfSkcciprDtt67JMzmUommnoeuNYOsvDewf44YtHSRdGhy5rC/GV63r5rUt7CPp9NV6hiIjMhedZxpIO0XRO5RQzpIAsUnDnjZu46/H9JJ0cLUE/qaxL1rXceeOmSY+LpbMMx52GvdkknRyPvniUR/YNkMjkdxM6IwG+cE0vn7p8DZGgv8YrFBGRuYqls4wmHFyvMb9X1ZoCskjBtotWcjf5WuQjY0nWTeliYa1lOO4QS2dru9BZcnIej71yjO/tOcx4Kv81tIb8fO6qdXz2qnW0hXU7EBFpdJmcy0jcIZ1VOcVc6DuiSJltF62c9kBezvUYjGXINOANJ+d6/P3rJ/jWc4cYjucPE4YDPj59xVpuuno9S6bUXYuISONxPctoonE3cepN1QKyMWY98E1gNeAB37DW3mOM6QYeBvqAfuDz1tqxMz2PSK2lsy6D0XTDvU3lepYn3xrigd39HJ9IAxDwGT7+wR6+cm0vy9rDNV6hiIjMh2g6y5jKKeZVNXeQc8AfWmtfNMZ0AC8YY34O3Ar8wlr7l8aYPwb+GPijKq5DZNYmkllGk41Vb2ytZed7I9y/6yD9I/kOHD4Dv3HxKm65vo/VSyI1XqGIiMyHlOMyksjg5Br3wHi9qlpAttYeB44XPo4ZY94E1gKfBLYVHvYg8DQKyFJnrLWcjGWIN9DIaGst+w6NsWNnP28PxkrXt12wgltv6KN32endOEREpPE4OY+xpEOigb5HNZoFqUE2xvQBVwB7gFWF8Iy19rgxZtoJDMaYO4A7AHp7exdimSIAZN38yOhG+hf5q0fGuW9nP68dnShdu25TN9u3bOS8le01XJnUmu6lIotHzvUYS2aJZ9S2rdqqHpCNMe3Ao8C/ttZGKx1Ta639BvANgM2bN+tPgSyIpJNjKNo4I6PfGYxx386D7O0/VcZ/+fql3L61j0vWLKnhyqRe6F4q0vhczzKufsYLqqoB2RgTJB+Ov2Ot/WHh8qAxpqewe9wDDFVzDSKVGks4jDXIyOj+kQT37+rnn94dLl17f08Ht2/ZyJUbumq4MhERmS+eZxlPZYmmsg2zcbNYVLOLhQHuA9601v512S89DtwC/GXhx8eqtQaRSnieZSiWIenUfy3XsfEUDz57iH98Y5DirXLTija2b+nj+k3LqPQdGhERqV+eZ4mms0yksupMUSPV3EHeAtwMvGaMeblw7U/IB+NHjDG3A4eBz1VxDSJn1Sgjo0/GMnz7uUP89PUTpZvluq4Wbr2hj20XrsCnYCwi0vCstURTOcZTatlWa9XsYrETONN37Y9U63VFKhXP5DgZy9R1Pdd40uF7zw/w45ePknXz61zZEeaW6zfwzy5Zjd+nYCwi0uistUTTOSaSWXJefW/YNAtN0pOmY21+2tBEqn6nDcXTOR55YYBHXzhKqjC9r6s1yJev3cAnPthDKOCr8QpFRGSuisE4msrW/TuZzUYBWZqK61kGo+m6nVGfyrr86MWjPLxvgFg6XxPdEQlw0+b1fPrKtbQE/TVeoYiIzJXnWWLpHBMp7RjXKwVkaRopx+VkLFOXNyMn5/HEq8f4zp7DjCXzO9stQT+fvWotn7tqPe0R/VUVaSZPvzXEvc8cYGAsyfquVu68cRPbLpp2bIA0ENezRFNZomkdvqt35/yua4zxAZ+11j6yAOsRmXf1XFLhepafvX6Cbz13iKFYBoBQwMcnL1vDF69Zz9LWUI1XKCIL7em3hrjr8f0E/YalLUGGYmnuenw/d4NCcoPKuV6plELt2hrDOQOytdYzxvw+oIAsDadep+J51vLUWyd5YHc/R8dTAPh9ho9f2sOXr+1lRUe4xiuU+WCMIRTw0RL0qzxGKnbvMwcI+g2tofy36NZQgKST495nDiggN5is6zGRyhLTgI+GU+n7tj83xvyfwMNAonjRWjtalVWJzIOU4zIUS9fV21jWWnb/aoT7d/VzYDj/V8ln4KPvX8VXr9/AmqUtNV6hzFU46CcS8NES8hMJ+PGp04jM0MBYkqUtwUnXWoJ+jowla7QimSkn5zGeckhkXAXjBlVpQN5e+PH3gPLf6U3zuxyR+TGedBhN1M9UPGstLx4e576dB3nrRKx0/cYLlnPbDX1sWNZWw9XJbPl9+R3icMBPJOhTIJZ5sb6rlaFYurSDDPkDvOu6Wmu4KqlEJucykcwSz9T/4Ck5u0oD8h8BP7PWRo0xfwZcCfxF9ZYlMjvWWk7GMnV1c3r96AQ7dh3k5YGJ0rVrNnazfUsfF6zqqOHKZCZ8xhAO5sNwOOAjFPAR9Kvdnsy/O2/cxF2P7yfp5GgJ+kllXbKu5c4btSdVr9JZl/FktiEmskplKg3If2qtfcQYsxX4DeC/AP8fcG3VViYyQznXYzCWIVMnLdzeHYyxY1c/ew6eqkS6dO0S/retG7l03ZIarkwq4TOmVCYRCeWDschC2HbRSu4mX4t8ZCzJOnWxqFtJJ8d4Mlu3rUNl9ioNyMXf+Y8D/8Na+5gx5s+rsySRmUtn8yOj66GF26GRBPfv7ueZd4ZL1y5c1cH2rX1s3tCF0VjouuQzhkjhMJ0CsdTatotWKhDXsUQmx3gqWzcbMjL/Kg3IR40x9wIfBf7KGBMG9N6i1IVoOstI3Kn5QYjjEym++ewhfv7GIMVzgX3LWrlty0a2nrdMwbjOFANxJOgr/KhALCJnZq0lnsnvGGvq3eJXaUD+PPAx4D9ba8eNMT3Av63eskTOzVrLSMIhWuP+xsPxDN957jA/ee04uUIyXrM0wq039PGhC1fi16GtumCMIRLMt1yLBPN1xPpHi4ici8ZBN6eKArK1Ngn8sOznx4Hj1VqUyLm4nmUolibl1O7trYlklu/tPcyPXz5W6rO8oj3Mzddv4GOXrCKgA1w1VQzEkYCflpACsYjMjMZBNzfNr5WGk8nl641r9S/5RCbH9184wg9eOEKyENC7WoN86dpefvuDawgFFIxrwRhDuDiUQ4FYRGZJ46AFFJCF/FjTe585wMBYkvV1flo6nslxMpapSb1xOuvy45eO8tDeAaLpfCuf9nCAm65ex+9esY6WkGpYF1IxEJcO1gUViEVk9nJlU+80DloUkJvc028Ncdfj+wn6DUtbggzF0tz1+H7uhroKydZaRhMOEzWoN866Hj959Tjf3nO4NHwkEvTxmSvXcdPm9bRH9NdoIUwd26yUXIutAAAgAElEQVRALCLzIet6jBeGe9T6sLfUD31nb3L3PnOAoN+UJja1hgIknRz3PnOgbgKy51kGa1Bv7HqWf3hjkG8+289gNANA0G/4ncvW8KVre+lqDS3oepqRxjaLSLVoHLScjQJykxsYS7K0JTjpWkvQz5GxZI1WNFnW9TgxkV7QemPPWn759kke2N3PwFgKAJ+B3/xADzdf18vKzsiCraXZhMpqiBWIRaQa0lmXiVSWRB1NXJX6o4Dc5NZ3tTIUS5d2kAFSWZd1Xa01XFVhHY7LUCy9YIckrLU8d2CUHbsO8quTCQAM8JH3r+SW6/tY29WyIOtoJkF/oYY4lC+bUEs8EamWdNZlLOnUtPuRNA4F5CZ3542buOvx/SSdHC1BP6msS9a13HnjppquayKVZTSxcMM/Xjo8xn07+3njeLR0bet5y7ltSx8bl7ctyBqaQShwaihHJOBTKzwRqbqs6zESd0g62jGWyikgN7ltF63kbvK1yEfGkqyrcRcLay0n4xni6YW5kb15PMp9Ow/y4uHx0rXNG7rYvrWPi1Z3LsgaFrNiyUQxFGuHWEQWirWW8WSW8VRWNcYyYwrIwraLVtbFgbyc6zEYyyzIbPtfnYyzY2c/zx4YKV27dG0n27du5LJ1S6v++ovR1LZr4YBPNcQiUhOJTI7RhKPJdzJrCshSF9LZ/PCPak8rGhhN8sDufp56+2Tp2vkr29m+tY9r+rrVNmwGAj4f4cKkunDQp8EcIlJzTs5jJJFRnbHMmQKy1FwsnWU4Xt1648Fomm89e4if7T9B8czfhu5WbtvSx6+dv1zB7hyKPYiLO8ThgI+g6odFpE54nmU8lWVC5RQyTxSQpaZGEw7jSaeqz/+dPYd54tVjZN38TbNnSYRbrt/AR96/qlQT+/yBUR7aO8DxaIqezha+cPV6rtnUXbV11TvtDotIo4hncozGnaq/AynNRQFZasLz8ofxqtWHMprK8tDeAX780lHSufxNc1l7iJuv28BvfmD1pN3P5w+Mcs+T7xLwGTojAUYSGe558l2+xvlNEZKLu8ORgK80mEPdJUSk3qmcQqpJAVkWXCaXrzeuxuGJpJPjBy8c4fv7jpAo3DSXtAT50jXr+Z3L1hAO+k/7nIf2DhDwGVoKv1Zsd/fQ3oFFGZADPh+RoI+wdodFpAF5nmUs6RBNazS0VI8CsiyoatUbZ7Iuj71yjO/uOUy00CKuLeTn85vX85mr1k4ahDLV8WiKzsjkX48EfZyIpuZ1jbWg3WERWSystURTOcZTzoINkJLmVbWAbIzZAXwCGLLWfqBw7c+BfwEUWwj8ibX2p9Vag9QPay0jCYdoKjuvz5t1PX762gm+vecQI/F8LXMk4OPTV67lps3r6ZwyRns6PZ0tjCQypR1kgHTWY3Vn403O0+6wiCxGsXSW8WRWbdtkwVRzB/kB4G+Ab065/nVr7X+u4utKnXE9y1AsPa91Yq5n+cWbgzz47CGOT6QBCPoNn/jgGr58bS/dbaGKn+sLV6/nniffJZV1iQR9pLMeOc/yhavXz9t6q6HYd7i8s4R2h0VksbDWEs/kFIylJqoWkK21zxhj+qr1/NIYnJzHYDQ9bzc3ay3/9O4w9+/q59BoEgCfgY9dspqbr9/Aqs7IGT/3TJ0qrtnUzdc4n4f2DnAimmJ1nXaxCPrzYThcCMPaHRaRxchaSyyTY0LBWGqoFjXIv2+M+SqwD/hDa+3YdA8yxtwB3AHQ29u7gMuT+ZLI5DgZy+DNQ72xtZbn+0fZsbOfd4fipesfunAFt97Qx/ru1rN+/rk6VRT/qxflU+mKYVi7wzIbupdKo1AwlnpiqnkCtLCD/ERZDfIqYBiwwF8APdba7ed6ns2bN9t9+/ZVbZ0y/8YSDmPz1N/4lSPj7Nh5kNeORkvXrt+0jO1b+njfyvaKnuP/ePiV0+qMU1mXZW1h/vqmy+ZlnXMR9PsKNcN+IkEfIb92h+U0c/4DoXup1CMFY1lIm1a0V3QvXdAdZGvtYPFjY8zfAk8s5Os3s6ffGuLeZw4wMJZkfVcrd964iW0XrZz313E9y8lYhqQz9/7Gb52IsmNnP/sOnXqT4crepWzfspGL13TO6LnqqVOFz5hJYTgc8JcGloiINAsFY6lnCxqQjTE91trjhZ9+Gnh9IV9/sZhp2H36rSHuenw/Qb9haUuQoViaux7fz90wryE55bicjGXmPM3owMk49+/uZ9d7I6VrF/d0cvvWPq7o7ZrVc9ayU0Wps0TwVCAWEWlWCsbSCKrZ5u17wDZguTHmCPDvgW3GmMvJl1j0A3dW6/UXq9mE3XufOUDQb0q9gFtDAZJOjnufOTAvAdlay1gyO+eR0UfHUjywu58n3xqiWPhz3op2tm/t49qN3XMqOVjIThU+Y2gJ+YkE/bQE/YQCqh0WESkG4/FEVmOhpe5Vs4vFF6e5fF+1Xq9ZzCbsDowlWTqlH3BL0M+RseSc15N1PU7GMqSzs2/hNhRN863nDvP3rx+n2Pt9fVcLt23p48YLVuCbh1rcanaqKHWXKPQejkwzrU9EpJlF01kFY2komqTXYGYTdtd3tTIUS0+aJpfKuqzrOnvnh3OJZ3IMz6FLxVjS4bt7DvP4K8fIuvnnWNUZ5pbr+/iNi1fNe13ufHWqCAV8tATzO8SRoOqHRUTOJOnkGIk7KqWQhqOA3GBmE3bvvHETdz2+n6SToyXoJ5V1ybqWO2/cNKs1eF5+Kl4sPbupeLF0lkf2HeHRF4+QzuZvmt1tIb5ybS+/dWlPXZUkFEc1F1uutSgQi4icU8pxGU858zogSmQhKSA3mNmE3W0XreRu8uUZR8aSrJtDF4u5DP5IOS6PvniER/YdIZ7Jd7nojAT4wjW9fOryNXVTmuD35WuI20IBWoJ+fArEIiLnZK0l4biMJx2cnHaMpbEpINeJSjtTzDbsbrto5ZwP5M128IeT83j8lWN8d89hxlP5XefWkJ/PXrWOz121jrZw7f8YBv0+WkN+WkMBIkH1IBYRqZS1lmg6RzSlrhSyeNQ+mciMO1PMR9idaau42Qz+yLkeP9s/yLeePcTJeAbI1+9+6vI1fPHqXpa0Bs/xDNUVDvppC/lpCfnVek1EZIY8zxJL5xhPObhe9YaOidSCAnIdqHYbtqlmEshnM/jD9SxPvT3EA7v7OTaeBiDgM3z80h6+fF0vy9vD8/nlVMxnDJGgn9awn9agX6ObRURmwfMs0XSWiVRWwVgWLQXkOlDNNmzTqTSQp7MuQ9HKB39Ya9n53gj37zpI/0h+7T4Dv3HxKm65vo/VSyLz/8WcRTEQtwTVfk1E6sdCTTadbwrG0kwUkOtAtdqwncm5Anlx8MdEKoutoN7YWsu+Q2Ps2NnP24Ox0vVtF6zg1hv66F1Wna9jOsVa4rZwgHBAtcQizabew+dCTTadT9ZaoimVUkhzUUCuA/Pdhu1czhbIU47LcDwz6aDF8wdGeWjvAMejKXqmDNh47cgEO3Yd5JUjE6XHX7uxm+1b+jh/VUdV1l9U3oKtOKijnlrEicjZzXeYbYTwudAldXOVyOQYTaiPsTQfBeQ6MJ9t2Kaa7hvQ1ECedHI4ruWzV67l+ERq0uc/f2CUe558l4DP0BkJMJLIcM+T7/KZsXU83z/C8/1jpcdevn4Jt2/dyCVrlsx53dMxxhAJnhrSUckOcb3vJok0q2qE2UYInwtdUjdbmZzLSNyZ05RUkUamgFwn5qMzxVRn/Ab0O5dw9+9cwr3PHODwaIKVHRFu2ryeKzZ0nfYcD+0dIOAztBTqd33GMJ7M8DdPv1d6zEWrO7h960au7F067yUNc2m/1gi7SSLNqhphthHC50KX1M1UzvUYTTrE05UfzBZZjBSQF7GzfQPacevVnL+6g8w5dgeOR1N0RgI4rleYnnfqprlpeRu3benjhvctm7dgHA76iQR8pR/n0mmiEXaTRJpVNcJsvYdPWPiSukpZaxkvnD2Zaa97kcVIAXkRm+4bUDjgo38kUSqlOFt9McCytjCHRhIkysaFBnyGtUtb+MZXr8I3x2BsjKGtcKguMs9jnBthN0mkWVUjzNZr+CxXzZK62Yqls4wlshV3LBJpBgrIi1j5NyDPs7jWksjkWNWRb7d2pvrir3E+F6xu53vPD/DOYIxc4dRywGfoiOS7Q/yrX3/fnMJxKOCjPRygIxKc11BcrhF2k0SaVTXCbD2Gz+lUo6SuElPPZNx6/QYuWbdEY6FFpqGAvIjd8Wsb+bPH95N1HcIBH+msR86zfOHq9cDp9cUtQT+JTI6v/+M7RNM5UoXyCwP5UoWgjw3dbaftMlfCZwytYT9tofnfKT6TRthNEmlW1QqztQqf9a78TEZnJMCx8SR//sQbfO3D58/4fi7SDBSQF6Gc6xFL53jfyg5+f9t5PLR3gBPRFKunlFAU64sBvEL92WjSodjm0hjojARY3h7CydlSuK70Zhrw+YiEfLSFArSG/Avek7hRdpNEmpXC7MK595kDBHz5g8851xIO+PGsy0N7BxSQRaahgLyIODmPiVSWeCZXGvBxzabuM978ejpbGI6nyeQ8RpOnJiP5DKxoDxPwGdrC+T8iLcF8ecK5bqZBv4+OSIDWUKAuehLrG7CINDvPs/SPJGgP+/HKBn1Egj5ORFNn+UyR5qWA3MCK9WSHRxOs7mzhc1etq3gnwPUs71vRxmtHx3HLDiy3hfz8m49ewN/uPEBrePJo5jPdTIN+H23hAG1hP+GAxjmLiNSD8gl4qzoijCQypZI6gHTWY3VnSw1XKFK/FJAb1FNvDvJnj+/HZ/I3wdeOjfPSwBh9y9q449c2nTEoe9by1FsnefDZfo6MnQq7LUEfG5e389XrNnDNpm6++/xhDo0k8awl6PfR3RbCZ0zpZmqMoS3spzMSJBJUKBYRqRfWWmKZHONlnSm+cPV67nnyXVJZl0jw9DMpIjKZAnIdOtP0N2stqaxLPJPjniffwwA51zIUy2Aw+A0cGUuWOlGUh2RrLbt/NcL9u/s5cDIB5A/fffTiVdxy/QbWLD21i/D8gVHGkg6uZ/GZfE3ziYk0nS1B/uDD59PdFqpq9wkREZmdWDrLeDJ72mjoazZ18zXOP+OZFBGZTAG5zkyd/jYYTfGnj73Ov01dyOW9S0t1wscn8gfsjoylMBh8PoMlX2sW8JlJtcIvHhrjvl0HefN4rPQ6v3b+cm7b0kffsrbT1vDQ3gHawwFagn7Gkg5Z1yPgN6xoD/E57TaIiNSddNZlOJ45a8u2s51JEZHJFJDrzP/45a/w+yDk95F1LQG/j6zrcv+ufv563WWlx/V0tjCSyJB1vVI/Ymvz9cDFWuH9xya4b2c/Lw+Mlz7v6r4ubt+6kQtWdZxxDcXuFgZDZ0uQQGGneCKVrdJXLSIis5FzPUYTDvGMRkOLzCcF5BopL6NYt7SFW67v48q+LvpHEnREAqWdYpj+cFyxnsznM1jPYgEsdLeFiKbyPYz/9++9XHr8pWuXcPvWPj64buk519bT2cJYMkN7JFgK30knt2ADNs5UYiIiUg2NeM/xPMtESqOhRaql9n24mtDTbw3xZ4+9zomJFG0hP0fHU9z9kzd46s0hVne2kM5OfotsupPG12zq5msfPp91S1pwbb6eeGlrgNFElsFYhmg6v5tw4aoO/uozl/Jfb7qsonDcGgrwex96HxZDOutirSXp5BZswEaxxGQolmZpS5ChWJq7Ht/P028NVf21RaT5NNo9x9p8MB4YSzKWdBSORapEO8gLxFpLJueRyXr8tyffw5h8OYS1lKa8PbR3YEYnjYv1ZD977QT/c+dBTsad0q/1LWvlti0b2XresooGdIQCPpa1hWkJ+Vm9ZDVBv68mAzbufeZAfmpfYTx0ayhA0slx7zMH6n5HR0QaT6PcczzPEk3nd4zL32EUkcnSWZeRhMNIPMNI3Dn1ccJhOO7w49/bUtHzKCBXibWWdNYjnXVJ51zSWY89vxrhob0DvHp0nJDfsKw9TFvhplwso5jJSeOReIZv7znMT149Tq5ww+xZEuHWG/r48EUrT+sy8fyBUR7aO8DxaIqewvNuOX85S1uDdESCkx5bqwEbA2NJlrZMXktL0M+RseSCr0VEFr96v+e4hVKKqEoppMk5uXy9/XAh7I7EMwwXAvBoPMNwwmEkPn/1+ArI88T1bD4MZ13SOQ8n55Wm2UE+nN7z5LsEfIZwwEfW9RiKZljZCW2hwKQyinOdNJ5IZXl47wA/eukomcKJ5eXtIb56/QY+dslqAv7TK2fKX78zEmA0meFvnnqPVZ1hPvT+VfP8f2P21ne1MhRLl3ZzID/Bb6Hqn0WkudTrPUc1xtIssoWDpiNxh+FEhtFC6B2esgNcLB2dic5IgGXtYZa1hVjWHmJ5e7jiz61aQDbG7AA+AQxZaz9QuNYNPAz0Af3A5621Y9VaQzU5Oa+wM+ySyXqn9Zyc6qG9AwR8hpagn67WEEOxNBbLSDyDr8NU1LA9kcnxgxeO8P0XjpB0XACWtgT54rW9fPKyNWcd7Vz++j6foTOSL+v4xj8drKuAfOeNm7jr8f0knVyp9GSh6p9FpPnU2z0nk3OJpnIkMjkFY2lormcZSxaCb9mu76nQ6zCSyDCWnHmHrPZwgGXtIZa15UNvd1kALobhZW3hs+aic6nmDvIDwN8A3yy79sfAL6y1f2mM+ePCz/+oimuYF8X64fwOsUcm5864BqzYOg3yv7EQYSzpkMl5LGsLn7Vhezrr8uOXj/HQ84dL/4JqC/u5afN6PnPlOlpC555kdzyaYklLkKDfV+pMUU9vIxZtu2gld0NN6p9FpPnUwz3HWks8kyOazpHJugv2uiKzUSz7mbrDO3XXdzzpMNNy+daQf9Ju77K2EN3tYVa0h/IhuC3MsvbQgkzwrVpAttY+Y4zpm3L5k8C2wscPAk9ThwHZ9SyZQt1wOuuSmVIuMRvFvsUthd/U9nAAv8+wrC3MX9902bSfk3U9fvracb793GFGEvkDeJGAj9+9ci03Xb3+tLrhM/EZQ29XK6NJh3DgVF1yPbyNOJ1a1T+LSHOq1T0n53pE0zliaR28k9rzrCWaypZKHUbizqQAPFz4cTQx8+AbDvhKO73L2/MBuLstH3zLSyDKS51qbaFXsspaexzAWnvcGHPGO5Ix5g7gDoDe3t6qLai4O+y4+Q4T6ax7znKJ2ZhJdwrXs/z8jUG++ewhTkTTAAT9ht++bA1fuqaX7rZQxa/bEvKzoj3M733ovLp6G1FEFsZC3Uulcpmcy0QqSyLjznnzReRcrLXE0rkpO7yFA26Fj0fiDqMJp3Tgv1JBvykLvvnd3eWFXd/lZaUObWF/RR216omp5l/Owg7yE2U1yOPW2qVlvz5mre061/Ns3rzZ7tu3b17WVF4ukSqUTCzUDarYReJM3Sk8a3nmnZPcv6ufgbH8YBCfgd/8QA83X9fLys5Ixa9ljKG7LcSSstPZxWb4Kl0QaUhz/u4yn/dSmRnPs8SdHDGVUcg8sdaScNxSXe9wWalDfvf3VNlD1p1Zzgn4TCncTq31XV6269sRCTRc8N20or2iBS/0DvKgMaansHvcA1S1E3up93Chq0Qml981rdW/2M/UncJay56Do+zY2c97J+NA/jvhhy9aya039LG2q+W0zzmbcDC/azy1OF2lCyIiCyvp5IincyQc7RZL5ZJOjuHCru6pdmaFIFz4eDTukM7N7B1vn6FwoC1cCr3FXd9l7afC8JKWYMMF3/m20AH5ceAW4C8LPz5WzReLpnOMxDPVfIk5+96ew3z3+cMknFM7ClvOW8ZtN/SxaUX7jJ7LZwzd7SE6K6xNFhGphUYc7VypnOuV3qVMZFxy3vyX7EnjSmVdRifV+GYmdXQolj2kZvgug89AV2uxtndyN4dTH4dZ0hI8bUaCTK+abd6+R/5A3nJjzBHg35MPxo8YY24HDgOfq9br17s3j0f5+s/fLe0YQ76IvT0c4LcvXTPjcJxveRLWH3wRqWvF0c5Bv5k02vluaMiQnHM9klmXtJMv29Nhu+bk5LzSDu/UIRanSiAyJDIzL6/pag2yrC1Md3u+vGF5oeyhvO63qzWk7//zrJpdLL54hl/6SLVesxH86mSc+3f1s/tXI6VrkaCP5W1hWkOnRk6fbVBIuYDPx/KO+jr5KSJyJvMx2rkWO9BZN9/v3sl5ZF1LzvPI5qx2iBe5qUMsiofZ5mOIxZKWYKmkoRh2lxe6Oywv7Px2tQanHf7VyKab6ltp5llISlUL5MhYkgd2H+Kpt4Yo7i8EfIaVHSHaQqeK3Isjp4vO9gepIxJkWVsIn/7VKCINYq6jnRdqB9r1LEknR8pxSTquhnYsMjnXYyyZPa2ud2rZw3hq5kMs2sL+fNgtdnMoheBC8O0I090amtMQi0Y1darvSCLDPU++y9c4v+5CsgJylQ1G03zr2UP8bP+JUt/A3u5WbtvSx49fPMpo0plUCF8+cvpMf5D+je98PnHZGu0ai0jDmeto5/nYgS5yPYtTdog751lcz+JZq1KJBnX6EIvJ7cyGCwF4PJllpr/DrSH/qaltU7o5LC874BZegCEWjap8qi9Qajs7k3fOF4oSVpWMJhy+s+cwT7x6rNReZXVnhFtu2MBH378Kv8/QEvCftTfydH+QMjmXH754lM9frX6mItJ4ZjLa2dpiYM0fQjLGcHg0QVdraNJjwgEfh0cTjCcdsm7+c1yb71hU3Pg1Jn+Q2RjIuZacV7uORjJzZxpiMTyl7nc2QywiAR/LO8KTSh3KW5wtL3xcydRaObvyqcJFU985rxcKyPMsmsry8L4BfvTi0VL7lWXtIb5y7QZ+69LVBMtqia7Z1M3XOP+MvZEn/UEy+XrjUMDH0fH6+4MkIvXPkh9dby1YbOHHfMi0gPUolRIYAwZT6r5cfKOr+H6XMebU59n8k7s2X5NrLZRnT1u2V3fB6g7+4MPn8Z09hzkxkWL1kha+dE0v71vZzsBosvQ6nse09b0r2iP5qaTFsGLzO9Ar2iOMFiaOSuOw1pY6Tk3XzaH84NtMd/WLQyyKAbe7vbzO91R3h9ZQ4w2xaFRTpwrD5HfO64kC8jxJOjkefeEoj+wbKLVs64wE+NK1vXzysjVnfMvlTL2R4dQfpNZQgKDfYIwh6eTqcjy0iNQ/17Mcq4N/YF+5oYsrN0yeEVXpBNPSVFLn3FNJpXastSQy7qR2ZpO6OpSF4dkMsZh8qO3Urm/59fZw4w2xWOxmMlW41hSQ5yiTdXn8lWN89/kBJgrF/G0hP5/fvJ7PXLV2TnXCX7hmPf/tyffIeR5Bv5+kk9N4aBFpaud6502qrzjEoljSMN0Qi5G4Q2aGQyz8PkN3oZdvscShvM53WaHFWWeLgm+jaqS/vwrIs5R1Pf7+9RN8+7lDDMfzb+uFAz4+fcVabrp6/aQRz7MRCvj49JVrWd0Z0XhoEZEyZ3vnTWYvnXWn1PhmTk1zm4chFuUH2U4bY9yRH2LhU/Bd9Brl768C8gy5nuUXbw3x4O5+jk+kgfzbPZ/4YA9fvraXZe3hWT1veTu3dUtb+f0PvY91Xa0aDy0iInOSybplJQ3lu72TSx1mOsTCAEtbg1MOtk0+5La8PcRSDbGQBqSAXCFrLf/03jD37+rn0Ei+X6fPwD+/ZDU3X7+B1Z2RWT93eTu37tYQ4ymHf/93b2CMUTgWEamReh9oMGmIRanGt6zsoRCAY7MdYlFoZdY9pZvDsgYYYlHvv3dS/xSQz8Fay/P9o+zY2c+7Q6fGQn/owhXcckMfvd1zPzD30N4Bgn5DRyT/9lLA75vU17MWU6NERJpZLQcaFIdYDE9T4zsSzzCccBid5RCLjkhg+gNuZWUP3W2NPcSikYZRSP1SQD6LV46Ms2PnQV47Gi1du25TN9u3bOS8le3z9jqDsTTdrZNrr4qTpRZqapSIiJxSjYEGrmcZT+bLHCaPKp77EIu2kD8fdjtODa6YGoSbZYhFIw2jkPqlgDyNt0/EuG/nQfYdGitdu7J3Kdu3bOTiNZ3z9jp+n2FFR5i+ZW2FyVKn/sVenCw1n1OjRESaXaVvvc9koIFnLePJbGG3NzOpf29p9zfhMDabIRZB36SwW77TW74DrCEWpzTSMAqpXwrIZQ4OJ7h/Vz873xsuXbu4p4PtWzdyZW/XWT5z5lpCfla0hwn4fWedLPWnj73O0ikdMYq7yyIiUrmZvPXe09nCcDxNOOAn53nkXEsy6xIJ+LnnH9+dNM1tNDnzIRahgK9Q03t6N4fiteUdoTm1Cm1WjTSMQuqX/uYBR8dSPPhsP794c6j0ttamFW3cvmUj123qntd+i8YYulqDLC0blbrtopXcDdO2c1v/TGthd/nUb1Vxd1lERCpXfOs9EvDhefnR0znX5b8//SveOxkvDbEYjjscn0gxlpyuxjfLY68cO+NrBP2mVMe7vCPft7e7cNhtWVmnBw2xqJ5GGkYh9aupA/LJWIZvPXeIn752vPS217quFm67oY9fv3DFvPdjDPp9rOgIE5mmBuxM7dzOtrtcTgf5RKTZWWtJOlN6+RYnt8Ud9h+fAAs5z06p8XX4nzsPnvP5l7QE6VkSKQ2smG7XV0Msaq+RhlFI/WrKgDyWdPjunsM8/sqx0ojLVZ1hvnp9H//s4lVV6dfYHgmwvC2Mb4bPfbbd5SId5BORxS6VdUtBd/LktkxhkEX+43R2ZtPbAII+w6YV7aft+hbbmXW3hVjaqiEWjaRRhlFI/WqqgBxLZ3lk3xEeffFI6Sba1RrkK9dt4OOX9lSlrY0xhmXtITojs5+sd65hITrIJyKNqqIhFvEMCWfmQyy62k51b1jeHiadddnbP0rI76Ml5MP18gfs/vVHLlCYEpFJmiIgpxyXH750hIf3HiGeyTdM74wE+MLV6/nUFWunLXmYD0G/j5WdYcKB6p4uHmiJDioAABP3SURBVBhL6iCfiNQVJ+cxmnSm3fUtlT3MYYjF8rKpbd3TTHA70xCLYhcLvfUuImezqANyJufygxeO8L3nD5cOW7QE/XzuqnV8dvM62sPV+/I7C1OIFqIWbX2XDvKJyMLIFae3nda/d/Lub3QWwbezMMRiUl1veWuz9jDdrXMbYqG33kWkEos2ID+yb4D/8g9vMxjNAPmWOp+6fA1fvLqXJa2zL3c4l2Jv44VszVPpQT4RkTOZdohF+WG3QgCe1RCLsL90qK170k7vqY+7W5tjiIVM5veZ0rkfW/iD5Vk747Z588VnDD5jMIbCf5M3uTzP1nR9snAWbUB+8dAYg9EMAZ/h45f28OXrelneHq7qa5b3Nl5IlRzkExGJp3P85NXjpw+xiDuMJWc+xKIl6C8cZAvRXRhcUb7ju7wtX/7QouC76Bhj8BuDz5f/2GfAkA+WPpMPvT6TD72WfIcRnzH4/fnPC/gNQZ/vrAfXXS8fRIuB1LUW64Fr89ds2Z9XX+F1TWEdxT4lBgPFsMupx5T/6Cuuf4bv+JavL1f8uPBzz+a/5tnk6HMtI///NP/Exdcp/39h7annmPpcxccVn6P890cmW7QB+Q8+cj6prMvnN6+jZ0n1m4N3tYboagud+4FVcq6DfCIiA2NJ/svP3znn404NsSiMLe44NcyifJqbhlgsTsXw6/cbAoUd3oDPEPD7CPgMQb+vKt2epirfXa5H9b6+mbJlwT4fmk+FaMp+PvUxTBO2yz8fWwjyUx9zhuetF4v27rZmaQt3f/IDjMQzVX0dv8+wsiOiMZ8iUvcMsLozclp5w9Rd37awf97OT1Q62lmqq7irWwy7Pl9xB7jsWtljpPnk/2EE+TtF7RSDulf2ToE7zc6869mKAnjxOWa6U75oA/JCCAf9rOpY+JIKEZHZuKink+/+i2sX7PVmMtpZzq5YxnCqfCFf3uAv/NwUf4RSmYExlHaANbxEGkUxqPtrHNQVkGdpSUuQ7gXqUiEi0oiKo52LNcjFQ8QP7R1oioBcXqc7qfZ10oNOhdlijazPGEwh/Ab8hoBvYUoaROQUBeQZCvjy46JVUiEicnbHoyk6I5O/zUSCPk5EUzVa0dwUd26L3Q0MlGpyQwEfAb+Z06EvEakfCsgz0BLys7Ijon/Ji4hUoKezhZFEZlIXi3TWY3Vn9Q9Oz4YxphR4g35DMOAj5Pct2KE0EakfCsgVWtqa798pIiKV+cLV67nnyXdJZV0iQR/prEfOs3zh6vW1XlohBOd3fkOFILz7vWHufeYAA2NJ1qtdpkhTq0lANsb0AzHABXLW2s21WEclfMawsnNhB3+IiCwG12zq5mucX9PRzgGfj3CwLAwXdoenlj88/dYQdz2+//9v715j7DjLA47/nz23Pbter9exN1en4DYixR+A4KZcLVe0aYJaBypaJULiKgVUIsoHpEZCSpG/pVX7oRVq45aUi0qJSkmxqnBJS930gikhTSARhhg3NCZpNiGWE7IOXq/ffjhzrPH6nPXaPmdmds//J63O2Zk5mSfvzj5+9p33fYdGrTNB6L//9wjv/8y3uGrzOm674RctlKURU2bV9ysppWdLPP9ZNWpjzK5v0ao73liSzkfRj3auj40x2arRbtZo1WsrHhpx5/2HaNSCxZOJp47+jIjOJLnHn5vn9r2PshsskqURYrdoH61GjUvWO95YkqquNhZMtuqsa9UZP8+n9j1xZJ4N7Qb/8+yLp1abSHTWWm3UgjvvP1RYgbzvwJxDPaSSlbWAbwK+FhHfjohbeh0QEbdExAMR8cAzzzxTaHCTrTqXTVscS1r98rn0J88Wm0uHKSJoN2tsnmpx5cYJNq1rnXdxDLBlZoJjC4scXzx56vG8KUGzNka7UePwkfkBRb687lCPuRdeYkO7wdwLL3H73kfZd2CukPNL6iirQH5jSuka4AbgQxGxY+kBKaU9KaXtKaXtmzdvLiywqfEGF68fd3keSWtCPpdetKm4XDoMjdoYF022uGxDm5ddNMGl022mxhsDydcf2LGVhcVELYKTJ1Pni8SmdS2OLSxyxczEacfvOzDHzXv286Y7vs7Ne/YPrIDtDvWYaNaJ6Lx2e7AlFaeUAjml9GT2OgfcA1xbRhxLbZxssnmqVXYYkqScznyQcbZsnGB6osF4Y3CPwu7aefUsu3dt4+WbJllMEGNw2fQ49VqwsJj4wI6tp44dZi/vE0fmT1sWDyi0B1tSR+EFckRMRsRU9z1wHfBI0XHkjUVwyfQ4GyZcxk2SqqBRG2N9u8El053CeF1r+FNmdl49y5c/soNPvms7r9kyw8kEs1Pj7N617bQxwMPs5e0O9cjr1YMtabjKmKR3MXBP9td/HfhcSukrJcQBdJLwxevHadbLGm0iSaOtURujla1H3H1fr5WXk3dePbvspLjuhL68QfXyfmDHVm7f+yjzx0+cejT30h7sPCf0ScNReIGcUjoEvKro8/bSbta4eGqcMSfjSVJhukuxTbbqNGtjqy4Hb5mZYO6Fl05bH39Qvbw7r55lN51e6sNH5rlimaI3v3ZzfqiHS9JJF25kl3lbN15n87qWk/EkqSATzTrr23XaQxhDXKRz7eU9V2frwe7KD/WATvvOHz9R6JJ00lo1kgXyxsmm440lqSDrWnWmJxqFP3RpWMMPzqWXd5iGOdRDGnUjVSD72GhJKsZYBOvG60y3GzRKGE887OEHK+3lHaZhDvWQRt3IzExr1Ma4bEPb4liShqi7VnH34R1lFMcwGusJd9dunj9+gpQ6r4Mc6iGNspGoFieadWanWqtuIogkrRaTrTpT4/XKdEKMwvCDqgz1kNaiamSyIdow0WTjpOONJWnQIoLJVo0N7WZhS2WudFzxqAw/qMJQD2ktWtNDLKZadYtjSRqwiGB9u8EVM21mp4pbR/5cnmDn8ANJF2JN9yA7pEKSBqc+Nsb6dp2p8Qa1IefXXj3F57KsmcMPJF2INV0gS5IuXLM+xnS7wbpWvZD1i/utQPHizxa4dLp92rHLjSt2+IGk82WBLEnqqVnvrEjRbha7fnG/nuKFxcSxhcU1P65YUvkskCVJp6mNBTOTTdaPN85+8BD0W4GiWR87Na54GE+wk6SuNT1JT5K0chHBdLvBlpmJ0opj6KxAcWxh8bRtxxYWuWp2it27tjE7Nc7RYwvMTo2ze9c2h1FIGjh7kCVJTDQ7q/4UtSLFcl6/dSOf2PdDTpw8Sas2xvREg0atdmqSnQWxpGErPxNKkkrTqI1xyfQ4l0wXt1zbcvYdmOMLD/6YmYkG4/UaxxcTz724wDuuudzCWFJh7EGWpBE0FsHMRJP17WJWplip7gS96fY4m6c62+aPn+Abh57jw+WGJmmEWCBL0oiZGm+wcbI59LWMz8coPCJaUvWVfz9NklSIsYDLZ9psnmpVsjiG/hP0XMpNUpEskCVpRIxF0KoXu6bxufIR0ZKqwCEWA9br8ahOLJGklfER0ZKqwAJ5gPo9HnU3mNwlaYVcyk1S2RxiMUD5x6NGdF4bteDO+w+VHZokSZJWyAJ5gJ44Mk+7cfr4PmdfS5IkrS4WyAPk7GtJkqTVzwJ5gJx9LUmrx74Dc9y8Zz9vuuPr3LxnP/sOzJUdkqSKsEAeoJ1Xz7J71zZmp8Y5emyB2alxdu/a5mQTSaqY7qTquRdeOm1StUWyJHAVi4Fz9rUkVV9+UjXARLPO/PET3Hn/IXO4JHuQJUmjx0nVkpZTSoEcEddHxPcj4mBE3FZGDJKk0eWkaknLKbxAjoga8AngBuCVwM0R8cqi45AkjS4nVUtaThk9yNcCB1NKh1JKx4HPAzeWEIckaUQ5qVrScsqYpHc58ETu+8PALy89KCJuAW4BuPLKK4uJTJLWGHNpf06qltRPGT3I0WNbOmNDSntSSttTSts3b95cQFiStPaYSyXp3JVRIB8GtuS+vwJ4soQ4JEmSpDOUUSB/C7gqIl4eEU3gJmBvCXFIkiRJZyh8DHJK6URE3Ap8FagBd6WUHi06DkmSJKmXUp6kl1K6F7i3jHNLkiRJy/FJepIkSVKOBbIkSZKUY4EsSZIk5VggS5IkSTkWyJIkSVKOBbIkSZKUEymd8ZTnyomIZ4AfFXS6TcCzBZ3rfFQ5virHBtWOr8qxQbXjq3JsMLj4nk0pXX8h/4GCcylU+2dT5dig2vFVOTaodnzGdv4KzaWrokAuUkQ8kFLaXnYc/VQ5virHBtWOr8qxQbXjq3JsUP34hqnK/+9Vjg2qHV+VY4Nqx2ds56/o+BxiIUmSJOVYIEuSJEk5Fshn2lN2AGdR5fiqHBtUO74qxwbVjq/KsUH14xumKv+/Vzk2qHZ8VY4Nqh2fsZ2/QuNzDLIkSZKUYw+yJEmSlGOBLEmSJOWMbIEcEddHxPcj4mBE3NZjfysi7s72fzMiXlZQXFsi4l8i4nsR8WhE/F6PY3ZGxNGIeCj7ur2I2HLnfzwivpud+4Ee+yMi/jRru+9ExDUFxfWKXJs8FBHPR8RHlhxTaNtFxF0RMRcRj+S2bYyI+yLisex1ps9n350d81hEvLug2P4oIg5kP7d7ImJDn88uew0MMb6PR8SPcz+/t/b57LK/30OK7e5cXI9HxEN9Pjv0titSVXNpdu5K59Oq5tLs3ObTC4+tEvm0yrl0mfjKz6cppZH7AmrAD4GtQBN4GHjlkmN+F/iL7P1NwN0FxXYpcE32fgr4QY/YdgL/WGL7PQ5sWmb/W4EvAwG8DvhmST/j/wN+rsy2A3YA1wCP5Lb9IXBb9v424I4en9sIHMpeZ7L3MwXEdh1Qz97f0Su2lVwDQ4zv48BHV/CzX/b3exixLdn/x8DtZbVdUV9VzqXZ+SqdT1dDLs39nM2n5x5bJfJplXNpv/iW7C8ln45qD/K1wMGU0qGU0nHg88CNS465Efh09v4LwFsiIoYdWErpqZTSg9n7F4DvAZcP+7wDdiPwmdSxH9gQEZcWHMNbgB+mlIp8atgZUkr3A88t2Zy/tj4NvK3HR38duC+l9FxK6QhwH3BBT1FbSWwppa+llE5k3+4HrhjkOc9Fn7ZbiZX8fg8ttixP/A7wt4M8Z0VVNpfCmsinVcilYD49r9iqkk+rnEuhuvl0VAvky4Enct8f5sykeeqY7AI/ClxUSHSZ7Fbka4Bv9tj9+oh4OCK+HBHbiowLSMDXIuLbEXFLj/0rad9hu4n+v1Blth3AxSmlp6DzDzgw2+OYKrTh++j0XvVytmtgmG7Nblne1ed2atlt92bg6ZTSY332l9l2g7YqcilUNp+uhlwK5tNBqGI+rXouhRLz6agWyL16L5aud7eSY4YmItYBfw98JKX0/JLdD9K51fUq4M+AfygqrswbU0rXADcAH4qIHUv2l912TWAX8Hc9dpfdditVdht+DDgB/E2fQ852DQzLnwM/D7waeIrOrbelSm074GaW7+0oq+2GofK5FCqdTyudS8F8OpCTVzOfroZcCiXm01EtkA8DW3LfXwE82e+YiKgD05zfLYpzFhENOsn8b1JKX1y6P6X0fErpp9n7e4FGRGwqIrbsnE9mr3PAPXRuw+StpH2H6QbgwZTS00t3lN12mae7t0mz17kex5TWhtkElt8A3pmyQV5LreAaGIqU0tMppcWU0kngL/uct8y2qwO/Bdzd75iy2m5IKp1Ls3NWNp+uglwK5tMLUtV8WvVcCuXn01EtkL8FXBURL8/+Or4J2LvkmL1Ad6brO4Cv97u4Bykbb/NJ4HsppT/pc8wl3TF8EXEtnZ/jT4YdW3a+yYiY6r6nMwnhkSWH7QXeFR2vA452b4EVpO9fnGW2XU7+2no38KUex3wVuC4iZrJbX9dl24YqIq4Hfh/YlVKa73PMSq6BYcWXH3/59j7nXcnv97D8KnAgpXS4184y225IKptLodr5dJXkUjCfnrcq59NVkEuh7Hx6rrP61soXndnBP6AzQ/Nj2bbddC5kgHE6t5QOAv8FbC0orjfRuYXxHeCh7OutwAeBD2bH3Ao8SmdG6X7gDQW229bsvA9nMXTbLh9fAJ/I2va7wPYC45ugk6Cnc9tKazs6/7A8BSzQ+Wv8/XTGX/4z8Fj2ujE7djvwV7nPvi+7/g4C7y0otoN0xpx1r73u6gOXAfcudw0UFN9ns2vqO3QS9aVL48u+P+P3e9ixZds/1b3WcscW3nZFfvVqayqQS7NzVzaf9rsWqEguzc5vPr2w2CqRT/vEVolc2i++bPunKDGf+qhpSZIkKWdUh1hIkiRJPVkgS5IkSTkWyJIkSVKOBbIkSZKUY4EsSZIk5VggS5mI+HhEfHTJtpdFxFnXVYyI/xxeZJK0uphPtdpZIEsDkFJ6Q9kxSNJaYD5VFVgga6RFxMci4vsR8U/AK7Jtr42IhyPiG8CHcse+JyK+FBFfyT7zB7l9Py0+ekmqDvOp1hILZI2siHgtnUdnvobO895/Kdv118CHU0qv7/Gxa4F3Aq8GfjsithcRqyRVmflUa40FskbZm4F7UkrzKaXn6TxucxLYkFL61+yYzy75zH0ppZ+klI4BX6TzKFtJGnXmU60pFsgadUuftf5ij23LHe+z2iWpw3yqNcMCWaPsfuDtEdGOiCngN7PtRyOi25PxziWf+bWI2BgRbeBtwH8UFKskVZn5VGtKvewApLKklB6MiLuBh4AfAf+W7XovcFdEzANfXfKxf6dzm/AXgM+llB4oKl5JqirzqdaaSMk7GtJKRMR7gO0ppVvLjkWSVjPzqarOIRaSJElSjj3IkiRJUo49yJIkSVKOBbIkSZKUY4EsSZIk5VggS5IkSTkWyJIkSVLO/wPL6k+U4wSJKgAAAABJRU5ErkJggg==\n",
"text/plain": [
"